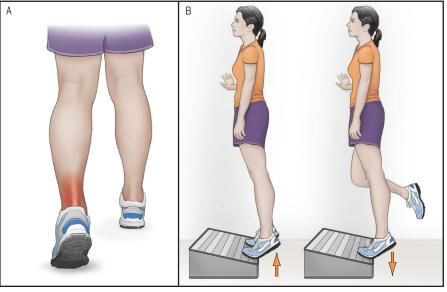
Journal of Orthopaedic & Sports Physical Therapy® Downloaded from www.jospt.org at on October 23, 2024. For personal use only. No other uses without permission. Copyright © 2018 Journal of Orthopaedic & Sports Physical Therapy®. All rights reserved.


Optimizing Recovery After Achilles Tendon Pain

Guidelines Help Deliver Quality Care

J Orthop Sports Phys Ther 2018;48(5):427. doi:10.2519/jospt.2018.0506

chilles tendinopathy can temporarily stop many active people, and particularly those who participate in sports. Pain in the Achilles tendon often occurs in the middle of this fibrous tissue that connects the muscles at the back of the lower leg to the heel bone. This type of Achilles soreness or stiffness is common and usually results from an overuse injury. Physical therapists can help ensure that patients with Achilles tendinopathy receive the best quality care to optimize their recovery.

Guidelines published in the May 2018 issue of *JOSPT* recommend best practices from the published literature for evaluating, diagnosing, and treating Achilles tendon pain. These guidelines also suggest how physical therapists can determine when their patients are ready to return to activities after this injury. For patients, these guidelines outline the best rehabilitation treatment options based on scientific research. At the end of the day, optimal care is a combination of the leading science, the clinical expertise of your health care provider, and your input as the patient.

TREATING ACHILLES TENDINOPATHY. Pain in the middle of your Achilles tendon is a common overuse injury related to activity and sports (A). It is often successfully treated with strength training guided by a physical therapist. Strength training uses your body weight with or without additional weight to load the tendon and related muscles, as in the heel-raise exercise shown here, where the body is repeatedly raised using both legs and lowered using only the affected left leg (B). These exercises are done slowly; they can decrease pain, improve mobility, and help you return to your daily activities and sports.

This JOSPT Perspectives for Patients is based on an article by Martin et al, titled "Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy Revision 2018" (J Orthop Sports Phys Ther 2018;48(5):A1-A38. doi:10.2519/jospt.2018.0302).

This Perspectives article was written by a team of *JOSPT*'s editorial board and staff. Deydre S. Teyhen, PT, PhD, Editor, and Jeanne Robertson, Illustrator.

NEW INSIGHTS

To update the 2010 guidelines on Achilles tendon pain, expert clinicians and researchers reviewed research published from 2009 to November 2017. They screened 1409 articles and closely examined 126 of the best papers on this topic to find the strongest evidence for diagnosis/classification, differential diagnosis, examination, and treatment to help decrease pain, improve mobility and function, and return you to your activities following Achilles tendinopathy.

PRACTICAL ADVICE

You may recover quickly or over several months from pain in your Achilles tendon. Although you have pain, you should continue your daily activities within your pain tolerance; it is critical that you avoid complete rest.

Your physical therapist will likely prescribe strength training to aid your recovery. Strength training exercises may use your body weight for resistance, and additional weight may be added to help make your calf muscles stronger. These exercises are typically performed slowly for the best results.

If your pain began recently, your physical therapist may use a treatment called iontophoresis, which delivers a medicine (dexamethasone) to the painful area to reduce soreness and improve function. Your physical therapist can help guide your recovery from Achilles tendinopathy, decreasing pain, improving mobility, and restoring muscle power.

For this and more topics, visit *JOSPT* Perspectives for Patients online at **www.jospt.org**.

JOSPT PERSPECTIVES FOR PATIENTS is a public service of the Journal of Orthopaedic & Sports Physical Therapy. The information and recommendations contained here are a summary of the referenced research article and are not a substitute for seeking proper health care to diagnose and treat this condition. For more information on the management of this condition, contact your physical therapist or other health care provider specializing in musculoskeletal disorders. JOSPT Perspectives for Patients may be photocopied noncommercially by physical therapists and other health care providers to share with patients. The official journal of the Orthopaedic Section and the Sports Physical Therapy Section of the American Physical Therapy Association (APTA) and a recognized journal of 36 international partners, JOSPT strives to offer high-quality research, immediately applicable clinical material, and useful supplemental information on musculoskeletal and sports-related health, injury, and rehabilitation. Copyright ©2018 Journal of Orthopaedic & Sports Physical Therapy.

CASE REPORT

PHILIP A. ANLOAGUE, PT, DHSc, OCS1 • DONALD S. STRACK, PT, DPT, ATC, OCS, FAAOMPT2

Considerations in the Diagnosis and Accelerated Return to Sport of a Professional Basketball Player With a Triceps Surae Injury: A Case Report

plantaris muscle is often misunderstood due to discrepancies in its morphological presentation, insertion, and function. 1,3,5,7,15,16,22-26,37,45,55,63,66,67,70 Tears are often misdiagnosed even possible. 6,21,41,56 The exact pain mechanisms, functional implications, and their association with midportion Achilles tendinopathy and/or, more commonly, a tear of the medial gastrocnemius15,24,44,62,70 are still being studied. 16,22,70 The mechanism of

as tendocalcaneus or Achilles tendon pathology,25 medial gastrocnemius strain, "tennis leg," 5,24,56,70,75 or sometimes deep vein thrombosis. 41,56 Controversy exists as to whether an isolated tear is injury is frequently attributed to eccentric loads with running and jumping. 5,13,16,25,66 Magnetic resonance imaging (MRI), diagnostic ultrasound, and surgical exploration have shown that isolated rupture of the plantaris tendon is possible. 13,15,25,64,66

- STUDY DESIGN: Case report.
- BACKGROUND: Acute injuries of the triceps surae and Achilles tendon are common in sports. Rupture of the plantaris tendon can be challenging to diagnose. There is limited evidence detailing the diagnosis, rehabilitation, and accelerated return to sport of elite professional basketball players who have sustained calf injuries.
- CASE DESCRIPTION: A 25-year-old male professional basketball player sustained an injury to his calf during a professional basketball game. This case report details the presumptive diagnosis, graduated progression of intervention, and return to play of a professional athlete with a likely isolated plantaris tendon tear.
- OUTCOMES: The patient returned to postseason competition 10 days post injury. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Before returning to play, the athlete showed improvements beyond the minimal clinically important difference

- for calf girth (2 cm) and numeric pain-rating scale score (4 points, 0-10 scale). Functional testing was conducted that included the Y Balance Test lower quarter and the Functional Movement Screen, with results that exceeded or returned the athlete to preseason levels.
- DISCUSSION: This report details the case of a professional basketball player who returned to competitive play in an accelerated time frame following injury to his calf. Diagnosing a plantaris tendon rupture can be challenging, and anatomical variations of this muscle should be considered. It was demonstrated in this case that physical therapy rehabilitation was helpful in making a treatment-based clinical diagnosis when imaging was unclear.
- LEVEL OF EVIDENCE: Therapy, level 5. J Orthop Sports Phys Ther 2018;48(5):388-397. Epub 6 Apr 2018. doi:10.2519/jospt.2018.7192
- KEY WORDS: Achilles tendinopathy, calf strain, plantaris rupture, return to sport

The plantaris is a small vestigial muscle that originates on the inferior aspect of the lateral supracondylar line of the femur and the oblique popliteal ligament (FIGURE 1). Its tendon has been traditionally described as extending distally and medially to insert and fuse with the tendocalcaneus. 1,23,45,55,67 Recently, anatomists have described a variety of presentations, suggesting that the tendon may be independent of the Achilles (FIGURE 2).14,16,46,61,66,70 dos Santos et al16 note that the tendon fuses with the Achilles but that its bone insertion has been overlooked. This difference may be functionally relevant to the continuum of different pain presentations that have been documented with injury and a player's expeditious return to play.9,12,43,49,50,53 Biedert⁵ reported a case in which an elite soccer player sustained a plantaris tendon rupture, experienced persistent pain and inability to return to play because of tension between the plantaris and the Achilles tendons, and was only able to return after a distal tenotomy was performed. Others report incidences where return was possible with nonsurgical treatment.30,34 Players who present with the variant morphology may have an advantage regarding recovery, because when the tendon is ruptured, there is no remaining soft tissue connection that can generate pain.

The plantaris is innervated by the tibial nerve and acts synergistically with the

Department of Physical Therapy, University of Dayton, Dayton, OH. 2 Regis University Orthopaedic Manual Physical Therapy Fellowship, Denver, CO. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Philip Anloague, 300 College Park, Dayton, OH 45469-2825. E-mail: Panloague1@udayton.edu
Copyright ©2018 Journal of Orthopaedic & Sports Physical Therapy

gastrocnemius to flex the knee and plantar flex the ankle. 1,23,45,55,67 Absent in 5% to 20% of the population, it is considered an organ of proprioception due to high muscle spindle density. 45,66 Mechanically, the tendon is reported to be stronger, stiffer, and less extensile than the neighboring Achilles tendon per cross-sectional area, and it has been shown that under similar tensile stresses, the Achilles elongates a greater distance than does the plantaris, which may fail.40,46 Isolated rupture of the plantaris is associated with rapid eccentric loading during weight-bearing sports activities where the knee is hyperextended and the ankle is forced into dorsiflexion,5,63 and is often linked with the subjective report of a "snapping/popping" sensation, as if the calf was struck with direct trauma.20,63,66,70 The exact source of pain as related to the midportion of the Achilles tendon is still in question.⁷² Other symptoms include swelling of the posteromedial calf proportional to the severity of soft tissue damage and pain

FIGURE 1. Typical anatomy of the plantaris, with the tendon conjoined with the Achilles. The blue arrow represents the plantaris muscle belly, and the red arrow represents the plantaris tendon. Reprinted with permission from Mediclip Manual Medicine Volume 2. Copyright @Wolters Kluwer.

with ankle dorsiflexion, resisted plantar flexion, and/or knee flexion. 4,9,16,30,35,44,47 Cases describing the injury, diagnosis, intervention, and rehabilitation of plantaris tendon rupture have been reported, 5,13,24,25 but there is little regarding the return to elite professional basketball.

CASE DESCRIPTION

HE PATIENT WAS A 25-YEAR-OLD MAN who injured his left calf while playing professional basketball. While defending an opposing player, he jumped and turned 180° toward his left, raising his right arm to block the basketball. Ground contact was made with his right leg, but, as he landed, his momentum (influenced by contact made with an opposing player) rotated his body to the left and posteriorly. The ball of his left foot contacted the ground and, as he attempted to slow his motion, his ankle was forced eccentrically into dorsiflexion with the knee flexed, and he fell over another player and onto his back. He was able to walk off the court but was unable to return. Medical evaluation by the team physician demonstrated obvious edema, with tenderness over the deep medial aspect of the proximal half of the posterior calf. Neurocirculatory status, confirmed through the assessment

of sensation, motor function, digital capillary refill, and dorsal pedal and posterior tibial artery pulses, was intact. Doppler ultrasound revealed patent vessels, with no evidence of deep vein thrombosis. Aggressive cryotherapy was supplemented by intermittent use of pneumatic compression^{17,59,60} on day 1 in the training facility and, beginning on day 3, during the evening when he was home.31,32,35 Elevation and compression interventions were implemented, as there was no concern regarding compartment syndrome. Ibuprofen was prescribed as needed, with the intention of decreasing inflammation.^{39,42}

Imaging

One day post injury, T2-weighted axial MRI, utilizing a fast-recovery, fast spinecho sequence, revealed a significant amount of hemorrhagic fluid dissecting the fascial planes between the left gastrocnemius and soleus.4,5,15,66 Interstitial edema and hemorrhage of the proximal soleus were noted, and, typical of a plantaris rupture, fluid was visualized deep to the lateral head of the gastrocnemius (FIGURE 3),4,15,22,27 although no tear could be identified. The inability to visualize a ruptured tendon or muscle has been well documented, and many believe that the diagnosis of plantaris strain is

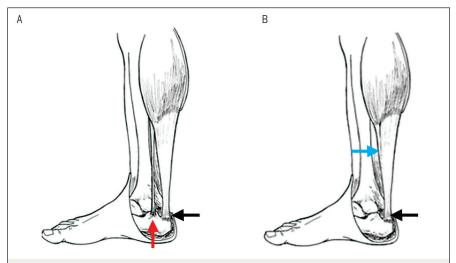
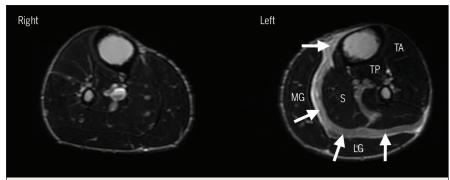


FIGURE 2. Plantaris insertion variations. (A) Anatomical variation of the plantaris tendon (red arrow), which is independent of the Achilles tendon (black arrow), and (B) typical insertion of the plantaris tendon (blue arrow), with insertion into the Achilles tendon (black arrow). Reprinted with permission from dos Santos et al.¹⁶

CASE REPORT

appropriate even when no tear is initially seen. ^{22,27,37} The initial impression included rupture of the plantaris at the myotendinous junction (due to profuse swelling), with a grade 2 strain of the medial gastrocsoleus complex, although suspicion of the latter diminished during


the clinical examination and throughout intervention.

Initial Examination and Preseason Measures

The patient presented to the initial physical therapy examination without putting

weight on the affected leg, and used a universal turning knee scooter to ambulate. He reported generalized deep medial calf pain and soreness through the proximal half of the lower leg, without specific point tenderness (TABLE 1).

The patient's numeric pain-rating scale (NPRS) score18,19,58 was 6/10, and circumferential measurements71,73 taken 10 cm distal to the superior aspect of the tibial tuberosity were 44.5 cm (right) and 46 cm (left), and those taken at 15 cm were 43 cm (right) and 45.5 cm (left) (TABLE 2). The ankle was notably limited (0°) in dorsiflexion passive range of motion (ROM), with a firm end feel that appeared to be influenced by muscular guarding. Talocrural accessory joint mobility testing was limited but equal bilaterally, and manually resisted plantar flexion strength was graded 3+ to 4-(maximum grade of 5), with generalized "soreness." He presented with grade 4strength with knee flexion without pain. It was inappropriate to conduct functional testing at this time, but preseason Functional Movement Screen (FMS) and Y Balance Test (YBT) data were available (TABLE 3) to allow for later comparisons in determining appropriateness for return to play (TABLE 4). The FMS^{10,11} and the YBT have demonstrated good reliability, 2,10,11,54,65,68,69 although little has been reported about their ability to predict injury in elite basketball players.2 Preseason YBT scores demonstrated a

FIGURE 3. Initial (day 1 post injury) T2-weighted, axial magnetic resonance imaging (fast recovery, fast spin-echo) image. The white arrows represent edema. Abbreviations: LG, lateral gastrocnemius; MG, medial gastrocnemius; S, soleus; TA, tibialis anterior; TP, tibialis posterior.

TABLE 1	Clinical Examination Findings
Clinical Examination	Clinical Findings
Observation	Obvious edema of the left proximal calf
Palpation	Deep tenderness over medial aspect of proximal calf and gastrocnemius
AROM	Dorsiflexion, -4°
PROM	Dorsiflexion, 0°
Manual muscle testing	Plantar flexion, 3+; knee flexion, 4-
Special tests	Neurocirculatory status intact, Thompson test negative, anterior drawer negative, talar tilt negative, squeeze test negative, Homans' sign negative
Abbreviations: ARON	A, active range of motion; PROM, passive range of motion.

TABLE 2	CLINICAL OUTCOMES							
	Initial	Phase 1 (Days 1-3)	Phase 2 (Days 4-7)	Reassessment (Day 8)	Phase 3 (Days 8-9)	Return to Play (Day 10)	Difference	
NPRS (0-10)	6	3	0-3	0-3	0-2	0-2	4	
Left calf girth, cm (10 cm distal to the superior aspect of tibial tuberosity)	46	45.5	45	44	44	44	2	
Left calf girth, cm (15 cm distal to the superior aspect of tibial tuberosity)	45.5	45.5	45.25	45	45	45	0.5	
AROM: ankle dorsiflexion, deg	-4	-2	2	6	8	10	14	
MMT: ankle plantar flexion	3+	4-	4	4	4	4/4+		
MMT: knee flexion	4-	4	4	4+	4+	4+/5		

left-sided deficit in anterior (-7.5 cm) and posteromedial (-5.5 cm) reach, and a composite difference of -3.93, suggesting some balance deficit or stiffness in the left ankle. The preseason FMS total score (17) was above the cut score of 14 reportedly linked to injury in other populations.²

The initial clinical impression supported suspicion of a plantaris rupture at the myotendinous junction, with suspected strain of the medial gastrocsoleus complex, although the patient did not display specific point tenderness and only generalized soreness with resisted plantar flexion. Limitations in strength and joint motion were likely due to effects of acute inflammation.

Rehabilitation and Intervention

Phase 1 The aim of phase 1 (days 1-3) (TABLE 5) was to decrease edema and pain, improve ROM and strength, and protect suspected injured tissue to allow healing. 13,30,34,38,66 The intervention was based on standard rehabilitation strategies for acute soft tissue injuries and was effective in abating pain by the end of each session. Day 1 involved ice massage and sustained medial specific soft tissue mobilization to the Achilles at its insertion, with the tendon in neutral. Force was applied perpendicular to gastrocnemius fiber direction using both thumbs to the point of tissue resistance and the onset of mild discomfort, with the goal of improving tissue extensibility.8 Effleurage and lymph drainage techniques were utilized to reduce edema.5,8,48,66,74 Passive dorsiflexion and plantar flexion ROM was introduced with the knee positioned in extension, then flexion. Isometric plantar flexion and dorsiflexion were introduced at 25% of the player's maximum effort to encourage muscle pump mechanisms74 to help reduce swelling and maintain neuromuscular/neurophysiologic function.5,8,33,48,66,74 Subsequently, knee flexion strengthening exercises, using an elastic band (Thera-Band; Performance Health, Akron, OH) for resistance, were performed in addition to hip internal and

external ROM activities with the knee flexed to maintain functional strength and motion throughout the lower extremity. It was apparent that he could generate substantive force (reported as 75% of maximum strength) with knee flexion, which suggested that the extent of gastrocsoleus strain might have been less than initially suspected. He participated in unweighted ambulation using an underwater treadmill (HydroWorx; Middletown, PA) pool⁴⁸ and treaded water for 15 minutes to maintain aerobic capacity. Weight bearing was progressed with standing lateral weight shifts and shallow pool walking on day 3, as the player

TABLE 3	Preseason Functional Testing (Prior to Injury)				
	Left	Right	Involved-Side Difference/Final		
Y Balance Test					
Anterior stance	66.5	74	-7.5		
Posteromedial stance	116.5	122	-5.5		
Posterolateral stance	118	119	-1		
Composite	84.31	88.24	-3.93		
Functional Movement Screen					
Squat	2	2	2		
Hurdle step	2	2	2		
Lunge	3	3	3		
Shoulder mobility	2	2	2		
Active SLR	3	3	3		
Push-up		2	2		
Rotary stability	3	3	3		
Total			17		

TABLE 4	RETURN TO 1	Play: Func	TIONAL TESTING
	Left	Right	Involved-Side Difference/Final
' Balance Test			
Anterior stance	70	75	-5
Posteromedial stance	121	122	-1
Posterolateral stance	116	117	-1
Composite	88.06	90.07	-2.01
Functional Movement Screen			
Squat	2	2	2
Hurdle step	2	2	2
Lunge	2	3	2
Shoulder mobility	2	2	2
Active SLR	3	3	3
Push-up		2	2
Rotary stability	3	3	3
Total			16

CASE REPORT

demonstrated the ability to increase weight on his affected limb without pain or a compensatory gait pattern. Each session concluded with 15 minutes in the cold tub,3,35,36,72 followed by pneumatic compression to reduce swelling.31,32,35,59,60 While the evidence related to the efficacy of this modality is sparse, its use has been supported for the recovery of elite athletes and long-distance runners,17 and in the management of individuals with vascular dysfunction. 59,60 As such, pneumatic compression was administered on day 1, 3 times per day, for 1 to 2 hours, with 20 minutes of rest between bouts. On the third day, the player was issued a compression sock and instructed to utilize the pneumatic compression device multiple times in the afternoon/evening, and to wear the device to bed with the leg elevated. He noted increased optimism regarding ambulation and a decreased NPRS score of 3/10 at the onset of treatment on day 3. By the end of his physical therapy session, he reported an NPRS score of 0. Patient education focused on maintaining compliance with edema control strategies and improving movement and exercise tolerance, without progressing too quickly. There were noted decreases in edema and pain and improved ROM, strength, and weight bearing (TABLE 2). Encouraged by the response to treatment and by lack of focal point tenderness, sharp pain, or elicitation of pain with knee flexion or ankle plantar flexion, the physical therapist became increasingly convinced that the plantaris tendon was completely ruptured and that the related musculature was sound.

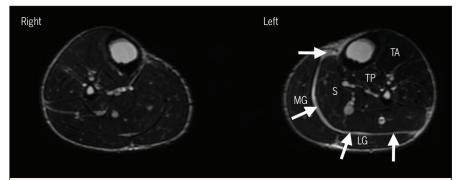
Phase 2 The goals of phase 2 (days 4-7) (TABLE 5) were to continue to decrease pain and edema and to improve ROM, functional/neuromuscular strength, soft tissue pliability, weight bearing, and proprioception, while maintaining endurance, with the intention of returning the player to oncourt activities. On day 4, the player ambulated (weight bearing as tolerated), with an initial NPRS score of 3/10. Cryotherapy modalities continued,²⁹ and specific soft

tissue mobilization was progressed to include the Achilles tendon. Talocrural joint mobilizations (grades I and II) were used for their neurophysiologic effects, and grades III and IV were used to improve ankle mobility and counter the effects of decreased activity.8,30 Passive ROM to the hip and ankle was transitioned to include progressive manually resisted ROM and ankle strengthening with a TheraBand (Performance Health). With a functional return to basketball in mind, proprioceptive and weight-bearing activities were progressed to standing heel raises with the knee in flexion and extension, focusing on good eccentric control. The treadmill (AlterG; Fremont, CA) treadmill was introduced at 50% body weight for 20 minutes at 8.05 kph on the fourth day, aimed at progressing walking and running based on what the therapists and trainers believed were moderate but safe baseline parameters. Having no difficulty, he quickly advanced to full weight bearing by day 5, without negative repercussions. Additionally, hip/pelvic strengthening was

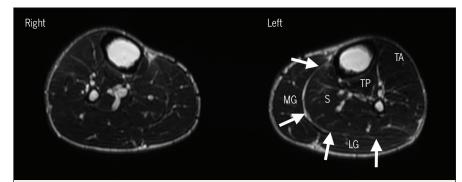
TABLE 5		Phases of Rehabilita	ation and Intervention	N
	Phase 1 (Days 1-3)	Phase 2 (Days 4-7)	Phase 3 (Days 8-9)	Return to Play (Day 10)
Ambulation and gait training	NWB with universal turning knee scooter. Standing weight shifts, progressed to walking in HydroWorx pool	WBAT to FWB. AlterG: walk/jog 3-5 mph at 40% body weight	FWB	FWB
Manual therapy	SSTM to gastrocnemius, effleurage, lymph drainage techniques	STM with addition of Achilles tendon. Talocrural joint mobilization	As before	As before. STM to entire LE
Therapeutic exercise	Progressive ROM activities. Resisted knee flexion with resistive band. Lateral standing weight shifts	Progressive ROM. Resisted ankle strengthening with resistive band. Hip/pelvic strengthening. Standing heel raises with knee flexed and extended	As before. Double-leg heel walk-outs. Smooth operators. Heel walk	As before and as indicated
Cardiopulmonary	Treading water in pool	VersaClimber: 1-min intervals, 10 times	VersaClimber	On-court running
Court and return-to- sport activities	None	125 midrange shots (various distances). Progressed to 200 jump shots with lateral movement	35-min workout with full-court running, double- and single-leg jumping	Full participation with on-court warm-up, shootaround, and game participation
Edema control	lce massage (5 min). Cold tub (15 min). Pneumatic compression (3 times per day, 1-2 h, and 20 min of rest). Compression sock	As before	As before	As before

performed, and a vertical climber (VersaClimber; Heart Rate Inc, Santa Ana, CA) was prescribed to increase endurance. On-court activities were initiated with 125 stationary midrange shots from various distances, and progressed to 200 jump shots with lateral movement by day 6. He noted improvements in pain and function daily. While he reported feeling tight and stiff in the morning, symptoms were alleviated with therapy, and circumferential lower-leg measurements and visual definition of the calf musculature continued to improve (TABLE 2). The sports medicine team was encouraged that by day 7, the player was recovering well from the acute sequelae associated with what appeared to be an isolated plantaris rupture, and that there did not appear to be irritation of the medial gastrocsoleus, Achilles tendon, or associated soft tissue.

Reassessment and Follow-up MRI


The patient was re-evaluated 8 days post injury, with the goal of determining readiness for more aggressive on-court progressions and a return to practice. Subjectively, he continued to feel stiff in the morning, but denied new or increased symptoms following interventions from the previous day. He walked with a mild limp at the start of the day but could bear full weight without compensation by mid morning. The patient's NPRS score ranged from 0 to 3, and circumferential measurements demonstrated a decrease of 2 and 0.5 cm since the initial evaluation (TABLE 2). Ankle dorsiflexion active ROM (6°) and knee and ankle plantar flexion strength (4/5) improved as therapy continued, with the addition of heel walking exercises and on-court practice that included 35 minutes of drills and progressions. Follow-up MRI demonstrated a 50% decrease in swelling on day 8, with resolution of interstitial edema absolving damage to the soleus and increasing confidence in the diagnosis of an isolated plantaris rupture (FIGURE 4).

Phase 3: Return to Play The goals of phase 3 were to continue to improve functional strength and endurance and


to re-establish neurophysiologic and neuromuscular control in preparation for a return to play. On day 8, the player reported feeling less stiff and sore than he had the previous morning and reported no pain, paresthesia, or increased swelling. After consultation between the physical therapist and team physician, it was agreed that there were risks involved with potential approval of the player's return to play, and it was documented that a return might result in several possible outcomes, including (1) reinjury, rebleeding, and regression; (2) the development of compartment syndrome and discontinuation of play; (3) increased pain, soreness, and stiffness that might inhibit the ability to play in a safe and effective manner; and (4) successful return to play. Each outcome was communicated and discussed with key stakeholders involved with the case, namely, the player. The player was cleared to participate in

an aggressive basketball workout that included full-court running and double-and single-leg jumping and cutting. He noted that the most painful maneuver to perform was jumping off the left leg for power, but that he felt that he was functioning at 70% (or better) of his preinjury performance. 9,12,49-53 At this point, the player believed that he could play at the needed level, and the sports medical team and coaching staff agreed that while there was still risk, he would contribute to the competitiveness of the team.

Return to Competitive Play^{9,12,49-53} On the morning of day 10, the athlete presented with no increase in symptoms or edema from the previous workout. Prior to the game, he received specific soft tissue mobilization and could fully partake in warm-ups and shoot around activities, stating that he was ready to return to play. The physical therapist consulted with the team physician, noting no increase in the

FIGURE 4. Follow-up (day 8 post injury) T2-weighted axial magnetic resonance imaging (fast recovery, fast spinecho) image. The white arrows represent diminished edema. Abbreviations: LG, lateral gastrocnemius; MG, medial gastrocnemius; S, soleus; TA, tibialis anterior; TP, tibialis posterior.

FIGURE 5. Exit physical (17 days post injury): T2-weighted axial magnetic resonance imaging (fast recovery, fast spin-echo) image. The white arrows represent minimal edema. Abbreviations: LG, lateral gastrocnemius; MG, medial gastrocnemius; S, soleus; TA, tibialis anterior; TP, tibialis posterior.

CASE REPORT

athlete's pain or swelling and that he felt well enough to compete. Functional testing was conducted, including the YBT lower-quarter test and the FMS, and the results (TABLE 4) demonstrated that performance had improved compared to preseason values (TABLE 3).

He competed in postseason games without a drop in preinjury performance or production, and his numeric pain rating continued to decrease (to 2/10) throughout the week. He reported only mild morning stiffness following games and noted resolution with activity and as the day progressed. Soft tissue mobilization was administered to the entire leg to assist postgame recovery and help maintain muscle extensibility, and selected therapeutic exercises were continued to improve functional ankle strength. Circumferential measurements validated decreased edema, as the player wore a compression sock and continued utilization of the cold tub, ice, and pneumatic device (TABLE 5). He used a hot pack before and during games to maintain muscle pliability and could fully participate in practice, pregame activities, and game play. He experienced some intermittent muscle cramping (game 1) but performed at a level commensurate with preinjury ability.

OUTCOMES

tracked throughout rehabilitation and compared to baseline assessments (TABLE 2). Calf girth and NPRS were improved beyond the minimal clinically important difference, with a 0.5- to 2.0-cm difference in calf girth between sides^{27,57,73} and an NPRS score difference of 4^{18,19,58} before return to play. Given the short time frame, muscle performance and ROM gains were likely neurophysiologic in nature and due to decreased facilitative guarding and edema.

While preseason YBT results showed a left-side deficit in the anterior (-7.5 cm), posteromedial (-5.5 cm), and composite (-3.93) scores, return-to-play testing demonstrated comparatively improved

symmetry, total excursion, and composite score values (TABLES 3 and 4). The composite FMS score (16) was 1 point lower than his preseason score (17) due to diminished performance on the left lunge test, but the player felt strongly that he was able to compete, and his decision was supported by the medical staff, coaches, and relevant front-office administrative personnel.

DISCUSSION

HIS CASE, INVOLVING A SUSPECTED isolated tear of the plantaris muscle of a professional basketball player, is notable for several reasons. First, while rupture of the plantaris is typically associated with forced eccentric ankle dorsiflexion and knee extension, his knee remained flexed, suggesting that the extent of strain at the talocrural joint was significant because of active insufficiency of the gastrocnemius and plantaris at the knee. Additionally, (1) anatomical variation, limitations with imaging, and clinical presentation make plantaris dysfunctions difficult to diagnose; (2) the rehabilitation and return to play for elite athletes sustaining complete plantaris rupture are not well described; and (3) there is an opportunity to compare preseason functional measures.

Anatomical Variation

Controversy exists regarding the significance or prevalence of an isolated tear of the plantaris, and the difficulty associated with diagnosis may be complicated by the presence of anatomical variation.^{5,14,16,24,66,70} Traditional anatomy textbooks locate the plantaris insertion medial and distal from its origin and fused with the tendocalcaneus or Achilles tendon,1,23,45,55,67 but it has been recently noted that it may attach independently on the calcaneus (FIGURE 2). 5,14,16,24,66,70 This variance may be functionally relevant to the continuum of pain presentations documented with injury and the expeditious ability to return to play. 9,12,43,49-51,53 Ultimately, we cannot modify the athlete's anatomy, and imaging typically provides information that, when coupled with the history and physical examination, may inform the diagnosis and intervention.

Imaging

Studies utilizing MRI, sonography, or surgical exploration show that plantaris injuries may occur in isolation or concomitantly with tears of the gastrocnemius, soleus, or popliteus,4,7,15,22,27,37,63 but prolific edema can make the precise identification of the involved structures difficult. Magnetic resonance imaging studies suggest that the diagnosis of plantaris strain is appropriate when fluid is observed with a strong clinical suspicion, even when no tear is initially seen. 22,27,37 In the current report, an empirically informed diagnosis was based on observation of patient response following the graduated progression of intervention. In contrast, Biedert⁵ reported on an elite athlete who presented with little hemorrhage or swelling in the posteromedial aspect of the calf. While the high signal intensity seen on T2-weighted images did suggest the presence of a persisting hematoma and an edematous process, the normal signal intensity found in the gastrocsoleus complex was evidence of focal tearing of the plantaris.⁵ In our case, the significant edema present confounded the ability to determine which structures were specifically involved. There was a large amount of hemorrhagic fluid dissecting along the fascial planes and myotendinous junction of the gastrocsoleus complex, and interstitial edema and hemorrhage of the proximal soleus were also noted, with fluid deep to the lateral head of the gastrocnemius muscle (FIGURE 3). This pattern was typical of a plantaris rupture at the myotendinous junction and a suspected grade 2 gastrocsoleus strain, and the aggressive edema-reduction efforts aided the diagnosis of an isolated plantaris tear during follow-up. Clinically, the torn plantaris is considered less severe than Achilles or gastrocsoleus tears and is nonsurgically treated.14,39 Follow-up MRI supported the clinical findings (FIGURES 4 and 5),

and, as swelling diminished, the Achilles and gastrocsoleus complex appeared healthy, with normal signal intensity.

Rehabilitation and Return to Play

Evidence is lacking on return-to-play criteria for athletes who have sustained a plantaris rupture and their readiness to compete.9,12,53 While there was a differential diagnosis of a gastrocsoleus strain, the exam findings were not consistent with these diagnoses. We therefore felt comfortable accelerating the athlete's rehabilitation progressions and return to play. The prescription of rest through controlled weight bearing, cryotherapy, pneumatic compression, and elevation was essential in diminishing edema to allow healing to occur and prevent complications known to be associated with plantaris or triceps surae strains.35,63 But, there was also a sense of urgency in determining whether the player could return to play.

Nonsurgical treatment is typically administered for 3 to 16 weeks, particularly when there is involvement of the gastrocsoleus complex.^{7,24,25} While immobilization is indicated during the acute phase of muscle healing due to histological factors such as capillary growth, granulation tissue formation, muscle fiber regeneration, and biomechanical tensile strength development, these factors have more precedence when healing, repair, and tissue regeneration are the goals.30,38,39 In this case, immobilization, protected weight bearing, and edema-control strategies were implemented, with the aim to improve function by decreasing pain, inflammation, and muscle soreness; however, as the likelihood of an isolated plantaris rupture increased and the suspicion of a medial gastrocsoleus strain diminished, it was recognized that rehabilitation should focus on treating the objective clinical symptoms and on functional ability, because healing of the tendon was not the aim. The aggressive use of pneumatic compression was integral, as evidence demonstrates that compression can help decrease edema and allow for early ambulation, while

not altering the rate of muscle glycogen resynthesis.31,32,35,59,60 Likewise, the utilization of specific soft tissue mobilization was thought to improve tissue extensibility and allow for lymph drainage. 5,8,48,66,74 As the player improved, gradual progression of passive, active, and resisted movements was introduced in a manner that accounted for the limits of tissue tolerance, with the intention of distending maturing scar tissue during the plastic phase of healing. He could progressively generate increased resistive force, suggesting that, aside from the complete rupture of the plantaris, the surrounding musculature was able to produce tensile loads.28 As in any case, cause and effect are difficult to infer, but the ability to progressively load the calf without increased signs of inflammation helped to support the player's readiness to advance. The functional need for the plantaris was considered, but the player's ability to perform was not diminished. It should also be noted that, anatomically, the plantaris is reported to be absent in 5% to 20% of the general population.1,23,45 Assuming that rehabilitation assisted recovery, it is unclear which intervention contributed to the improvement, because a multimodal approach reflective of clinical practice was implemented.

Other cases report patient progression to graduated strengthening, stretching, and proprioceptive activities. 5,7,8,13,24,47 This athlete could advance to more dynamic activities without incident, and he demonstrated the ability to generate adequate forces to participate in oncourt activities that included running and double- and single-leg jumping, without apparent proprioceptive deficit. There is no consensus on guidelines or criteria for return to play for muscle strains, and decision making is based on expert opinion and related to the desire to minimize the risk of recurrence and maximize performance. 49-51,53 In the present case, the evolving clinical diagnosis diminished the risk of "recurrence," because, with the complete rupture of one structure, the related soft tissue did not

appear to be aggravated by clinical intervention. The literature suggests that an earlier return to play is possible even if there is a low to moderate risk of injury recurrence, because of improvements in the ability of sports medicine teams to better understand mechanism of injury, prognosis, risk management strategies, and rehabilitation programs. 49-51,53 Also, the player in this case study did not demonstrate cardiorespiratory decline, which is in line with literature that suggests that a detraining effect does not occur until after 2 weeks.^{9,12,43,53} He did not require or have the opportunity to participate in advanced return-to-sports activities due to his lack of substantive decline and his ability to return to play. The player competed in postseason professional basketball games during a 7-day span without residual symptoms or a drop in preinjury minutes played, performance, or production.

Preseason Measures

While the preseason FMS score (17) for this athlete was not predictive of the likelihood of injury, the sports medicine team did believe that the screen was of clinical value and offered a good baseline comparison to help determine the player's readiness for return to play. He did present with preseason YBT scores that suggested a predisposition to injury, according to the testing protocol⁵⁴ (YBT composite, 84.31%; anterior reach difference, 7.5 cm). Teyhen et al⁶⁹ found that there was a relationship between a YBT composite score and Achilles flexibility (r = 0.38, P = .004), which may imply that our player's limitation in weight-bearing ankle dorsiflexion and possible posterior calf inflexibility or stiffness were linked to his plantaris injury.^{5,22,28,35,40,44,63} It is important to note that the player did not report to training camp with a history or complaint of left calf dysfunction, and that these preseason findings were identified by the sports medicine team; his program was designed to include corrective exercises and manual therapy to address these limitations accordingly. In

CASE REPORT

any event, return-to-play functional and YBT testing demonstrated comparatively improved symmetry, total excursion, and composite score (TABLES 3 and 4).

CONCLUSION

in which a professional basketball player returned to competitive play in an accelerated time frame following rupture of the plantaris tendon. The physical therapy management and decision-making framework for this injury incorporated the patient's history, physical examination, diagnostic imaging, and ongoing response to treatment as a basis for the return to play. •

ACKNOWLEDGMENTS: We would like to thank and acknowledge Dr Charles Dunn, MD for his expertise and consultation with reading and interpreting the diagnostic images utilized in this case.

REFERENCES

- Agur AMR, Dalley AF. Grant's Atlas of Anatomy.
 12th ed. Baltimore, MD: Lippincott Williams & Wilkins: 2009.
- Azzam MG, Throckmorton TW, Smith RA, Graham D, Scholler J, Azar FM. The Functional Movement Screen as a predictor of injury in professional basketball players. Curr Orthop Pract. 2015;26:619-623. https://doi.org/10.1097/ BCO.0000000000000000096
- 4. Bencardino JT, Rosenberg ZS, Brown RR, Hassankhani A, Lustrin ES, Beltran J. Traumatic musculotendinous injuries of the knee: diagnosis with MR imaging. *Radiographics*. 2000;20 spec no:S103-S120. https://doi.org/10.1148/radiographics.20.suppl_1.g00oc16s103
- 5. Biedert RM. Surgical treatment for persistent complaints following rupture of the fascia of the plantaris longus muscle: a case report. Knee Surg Sports Traumatol Arthrosc. 2005;13:335-337. https://doi.org/10.1007/s00167-004-0532-6
- Blundell Jones G. Pathology of ruptured plantaris. Br Med J. 1945;1:876. https://doi.org/10.1136/ bmj.1.4407.876
- Chen CP, Tang SF, Hsu CC, et al. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report.

- *J Med Case Rep.* 2009;3:7291. https://doi. org/10.4076/1752-1947-3-7291
- 8. Christenson RE. Effectiveness of specific soft tissue mobilizations for the management of Achilles tendinosis: single case study—experimental design. *Man Ther*. 2007;12:63-71. https://doi.org/10.1016/j.math.2006.02.012
- Clover J, Wall J. Return-to-play criteria following sports injury. Clin Sports Med. 2010;29:169-175. https://doi.org/10.1016/j.csm.2009.09.008
- Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function part 1. N
 Am J Sports Phys Ther. 2006;1:62-72.
- Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function part 2. N Am J Sports Phys Ther. 2006;1:132-139.
- 12. Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO. Return-to-play in sport: a decision-based model. *Clin J Sport Med*. 2010;20:379-385. https://doi.org/10.1097/JSM.0b013e3181f3c0fe
- **13.** Dar G, Dolev E, Kots E, Calé-Benzoor M. Rehabilitation of plantaris tendon rupture in an elite triathlete: a case report. *J Athl Enhancement*. 2013;2:2. https://doi.org/10.4172/2324-9080.1000108
- **14.** Daseler EH, Anson BJ. The plantaris muscle: an anatomical study of 750 specimens. *J Bone Joint Surg Am*. 1943;25:822.
- **15.** Delgado GJ, Chung CB, Lektrakul N, et al. Tennis leg: clinical US study of 141 patients and anatomic investigation of four cadavers with MR imaging and US. *Radiology*. 2002;224:112-119. https://doi.org/10.1148/radiol.2241011067
- 16. dos Santos MA, Bertelli JA, Kechele PR, Duarte H. Anatomical study of the plantaris tendon: reliability as a tendo-osseous graft. Surg Radiol Anat. 2009;31:59-61. https://doi.org/10.1007/ s00276-008-0391-9
- 17. Draper SN. Effects of intermittent pneumatic compression on delayed onset muscle soreness (DOMS) in long distance runners [thesis]. Cleveland, OH: Cleveland State University; 2014.
- 18. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. J Pain Symptom Manage. 2003;25:406-411. https://doi.org/10.1016/S0885-3924(03)00162-3
- Farrar JT, Portenoy RK, Berlin JA, Kinman JL, Strom BL. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294. https://doi.org/10.1016/ S0304-3959(00)00339-0
- Ferreira-Junior JB, Bottaro M, Vieira CA, et al. Effects of partial-body cryotherapy (-110°C) on muscle recovery between high-intensity exercise bouts. Int J Sports Med. 2014;35:1155-1160. https://doi.org/10.1055/s-0034-1382057
- Finny CM. Rupture of tendons [letter]. Br Med J. 1931;1:1002. https://doi.org/10.1136/ bmj.1.3674.1002
- 22. Gopinath TN, Jagdish J, Krishnakiran K, Shaji PC.

- Rupture of plantaris muscle a mimic: MRI findings. *J Clin Imaging Sci.* 2012;2:19. https://doi.org/10.4103/2156-7514.95433
- **23.** Gray H. Gray's Anatomy. London, UK: Arcturus; 2013.
- Hamilton W, Klostermeier T, Lim EV, Moulton JS. Surgically documented rupture of the plantaris muscle: a case report and literature review. Foot Ankle Int. 1997;18:522-523. https://doi. org/10.1177/107110079701800813
- Harmon KJ, Reeder MT, Udermann BE, Murray SR. Isolated rupture of the plantaris tendon in a high school track athlete. Clin J Sport Med. 2006;16:361-363.
- **26.** Harvey FJ, Chu G, Harvey PM. Surgical availability of the plantaris tendon. *J Hand Surg Am*. 1983;8:243-247. https://doi.org/10.1016/S0363-5023(83)80151-8
- 27. Helms CA, Fritz RC, Garvin GJ. Plantaris muscle injury: evaluation with MR imaging. *Radiology*. 1995;195:201-203. https://doi.org/10.1148/ radiology.195.1.7892469
- **28.** Herring SA. Rehabilitation of muscle injuries. *Med Sci Sports Exerc*. 1990;22:453-456.
- 29. Hohenauer E, Taeymans J, Baeyens JP, Clarys P, Clijsen R. The effect of post-exercise cryotherapy on recovery characteristics: a systematic review and meta-analysis. PLoS One. 2015;10:e0139028. https://doi.org/10.1371/journal.pone.0139028
- **30.** Järvinen MJ, Lehto MU. The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med. 1993;15:78-89. https://doi.org/10.2165/00007256-199315020-00002
- Keck NA. Effect of lower limb compression (NormaTec) on glycogen resynthesis [thesis]. Missoula, MT: University of Montana; 2012.
- **32.** Keck NA, Cuddy JS, Hailes WS, Dumke CL, Ruby BC. Effects of commercially available pneumatic compression on muscle glycogen recovery after exercise. *J Strength Cond Res.* 2015;29:379-385. https://doi.org/10.1519/JSC.0000000000000000772
- 33. Kidgell DJ, Stokes MA, Castricum TJ, Pearce AJ. Neurophysiological responses after short-term strength training of the biceps brachii muscle. J Strength Cond Res. 2010;24:3123-3132. https:// doi.org/10.1519/JSC.0b013e3181f56794
- **34.** Kimura IF, Thompson GT, Gulick DT. The effect of cryotherapy on eccentric plantar flexion peak torque and endurance. *J Athl Train*. 1997;32:124-126.
- 35. Kwak HS, Lee KB, Han YM. Ruptures of the medial head of the gastrocnemius ("tennis leg"): clinical outcome and compression effect. Clin Imaging. 2006;30:48-53. https://doi.org/10.1016/j. clinimag.2005.07.004
- 36. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46:233-240. https://doi. org/10.1136/bjsports-2011-090061
- 37. Leekam RN, Agur AM, McKee NH. Using sonogra-

- phy to diagnose injury of plantaris muscles and tendons. *AJR Am J Roentgenol*. 1999;172:185-189. https://doi.org/10.2214/ajr.172.1.9888765
- 38. Lehto M, Duance VC, Restall D. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg Br. 1985;67:820-828.
- Li Y, Fu FH, Huard J. Cutting-edge muscle recovery: using antifibrosis agents to improve healing. *Phys Sportsmed*. 2005;33:44-50. https://doi.org/10.1080/23263660.2005.11675758
- Lintz F, Higgs A, Millett M, et al. The role of Plantaris Longus in Achilles tendinopathy: a biomechanical study. Foot Ankle Surg. 2011;17:252-255. https://doi.org/10.1016/j.fas.2010.08.004
- **41.** Lopez GJ, Hoffman RS, Davenport M. Plantaris rupture: a mimic of deep venous thrombosis. *J Emerg Med*. 2011;40:e27-e30. https://doi.org/10.1016/j.jemermed.2007.12.027
- **42.** Masters CS, Yelland MJ. The use of therapeutic medications for soft-tissue injuries in sports medicine [letter]. *Med J Aust*. 2006;184:198; author reply 198-199.
- McFarland EG. Return to play. Clin Sports Med. 2004;23:xv-xxiii. https://doi.org/10.1016/j. csm.2004.04.005
- Miller WA. Rupture of the musculotendinous juncture of the medial head of the gastrocnemius muscle. Am J Sports Med. 1977;5:191-193. https://doi.org/10.1177/036354657700500505
- Moore KL, Dalley AF, Agur AM. Lower limb. In: Moore: Clinically Oriented Anatomy. 7th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014:508-669.
- 46. Morrison WA, Schlicht SM. The plantaris tendon as a tendo-osseous graft. Part II. Clinical studies. J Hand Surg Br. 1992;17:471-475. https://doi. org/10.1016/S0266-7681(05)80277-3
- **47.** Nsitem V. Diagnosis and rehabilitation of gastrocnemius muscle tear: a case report. *J Can Chiropr Assoc.* 2013;57:327-333.
- **48.** Nunley JA. The Achilles Tendon: Treatment and Rehabilitation. New York, NY: Springer; 2009.
- **49.** Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. *Clin J Sport Med*. 2002;12:3-5.
- Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005:15:436-441.
- 51. Orchard JW, Best TM, Mueller-Wohlfahrt HW, et al. The early management of muscle strains in the elite athlete: best practice in a world with a limited evidence basis. Br J Sports Med. 2008;42:158-159. https://doi.org/10.1136/bjsm.2008.046722

- **52.** Paoloni JA, Orchard JW. The use of therapeutic medications for soft-tissue injuries in sports medicine. *Med J Aust*. 2005;183:384-388.
- Pedret C, Rodas G, Balius R, et al. Return to play after soleus muscle injuries. Orthop J Sports Med. 2015;3:2325967115595802. https://doi. org/10.1177/2325967115595802
- 54. Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the Star Excursion Balance Test. N Am J Sports Phys Ther. 2009;4:92-99.
- 55. Putz R, Pabst R, Putz R, Sobotta J. Sobotta Atlas of Human Anatomy: Head, Neck, Upper Limb, Thorax, Abdomen, Pelvis, Lower Limb. Munich, Germany: Elsevier/Urban & Fischer; 2008.
- Rohilla S, Jain N, Yadav R. Plantaris rupture: why is it important? BMJ Case Rep. 2013;2013:bcr2012007840. https://doi.org/10.1136/bcr-2012-007840
- 57. Rohner-Spengler M, Mannion AF, Babst R. Reliability and minimal detectable change for the figure-of-eight-20 method of measurement of ankle edema. J Orthop Sports Phys Ther. 2007;37:199-205. https://doi.org/10.2519/jospt.2007.2371
- 58. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8:283-291. https://doi.org/10.1016/j. ejpain.2003.09.004
- 59. Sands WA, McNeal JR, Murray SR, Stone MH. Dynamic compression enhances pressure-to-pain threshold in elite athlete recovery: exploratory study. J Strength Cond Res. 2015;29:1263-1272. https://doi.org/10.1519/ JSC.000000000000000412
- Sands WA, Murray MB, Murray SR, et al. Peristaltic pulse dynamic compression of the lower extremity enhances flexibility. J Strength Cond Res. 2014;28:1058-1064. https://doi.org/10.1519/JSC.000000000000000244
- **61.** Schlicht SM, Morrison WA. The plantaris tendon as a tendo-osseous graft. Part I. An anatomical study. *J Hand Surg Br.* 1992;17:467-470. https://doi.org/10.1016/S0266-7681(05)80276-1
- Severance HW, Jr., Bassett FH, 3rd. Rupture of the plantaris—does it exist? J Bone Joint Surg Am. 1982;64:1387-1388.
- 63. Shah JR, Shah BR, Shah AB. Pictorial essay: ultrasonography in 'tennis leg'. Indian J Radiol Imaging. 2010;20:269-273. https://doi.org/10.4103/0971-3026.73542
- 64. Slatyer MA, Hensley MJ, Lopert R. A randomized controlled trial of piroxicam in the management of acute ankle sprain in Australian Regular Army recruits. The Kapooka Ankle Sprain Study. Am

- *J Sports Med.* 1997;25:544-553. https://doi. org/10.1177/036354659702500419
- 65. Smith CA, Chimera NJ, Wright NJ, Warren M. Interrater and intrarater reliability of the Functional Movement Screen. J Strength Cond Res. 2013;27:982-987. https://doi.org/10.1519/ JSC.0b013e3182606df2
- Spina AA. The plantaris muscle: anatomy, injury, imaging, and treatment. J Can Chiropr Assoc. 2007;51:158-165.
- **67.** Testut L, Latarjet A. *Tratado de Anatomía Humana*. 9th ed. Barcelona, Spain: Salvat; 1951.
- 68. Teyhen DS, Riebel MA, McArthur DR, et al. Normative data and the influence of age and gender on power, balance, flexibility, and functional movement in healthy service members. Mil Med. 2014;179:413-420. https://doi.org/10.7205/MILMED-D-13-00362
- 69. Teyhen DS, Shaffer SW, Lorenson CL, et al. Clinical measures associated with dynamic balance and functional movement. J Strength Cond Res. 2014;28:1272-1283. https://doi.org/10.1519/JSC.000000000000000272
- **70.** van Sterkenburg MN, Kerkhoffs GM, Kleipool RP, van Dijk CN. The plantaris tendon and a potential role in mid-portion Achilles tendinopathy: an observational anatomical study. *J Anat*. 2011;218:336-341. https://doi.org/10.1111/j.1469-7580.2011.01335.x
- Watson CP, Boland RA, Refshauge KM. Measurement reliability of swelling in the acute ankle sprain. Foot Ankle J. 2008;1:4. https://doi. org/10.3827/faoj.2008.0112.0004
- **72.** White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. *Extrem Physiol Med*. 2013;2:26. https://doi.org/10.1186/2046-7648-2-26
- 73. Whitney SL, Mattocks L, Irrgang JJ, Gentile PA, Pezzullo D, Kamkar A. Reliability of lower extremity girth measurements and right- and left-side differences. J Sport Rehabil. 1995;4:108-115. https://doi.org/10.1123/jsr.4.2.108
- Williams KJ, Ayekoloye O, Moore HM, Davies AH.
 The calf muscle pump revisited. J Vasc Surg Venous Lymphat Disord. 2014;2:329-334. https://doi.org/10.1016/j.jvsv.2013.10.053
- 75. Yu J, Garrett WE, Jr. Ruptures of the medial gastrocnemius muscle ("tennis leg"). In: Nunley JA, ed. The Achilles Tendon: Treatment and Rehabilitation. New York, NY: Springer; 2009:35-40.

NEHA DEWAN, MPT Ortho, PhD1.2 • JOY C. MACDERMID, PT, PhD1.4 • NORMA MACINTYRE, PT, PhD1

Validity and Responsiveness of the Short Version of the Western Ontario Rotator Cuff Index (Short-WORC) in Patients With Rotator Cuff Repair

houlder pain is the third most commonly reported symptom encountered in musculoskeletal practice. Rotator cuff disorders (RCDs) account for substantial work loss, sick leave, and poor health-related quality of life (HRQoL). Lateral to reduce pain and the main aim of rotator cuff repair (RCR) is to reduce pain and

- STUDY DESIGN: Clinical measurement.
- BACKGROUND: Recently, the Western Ontario Rotator Cuff Index (WORC) was shortened, but few studies have reported its measurement properties.
- **OBJECTIVE:** To compare the validity and responsiveness of the short version of the Western Ontario Rotator Cuff Index (Short-WORC) and the WORC (disease-specific measures) with those of the Shoulder Pain and Disability Index (SPADI) and the simple shoulder test (SST) (joint-specific measures); the Disabilities of the Arm, Shoulder and Hand (DASH) (a region-specific measure); and the Medical Outcomes Study 12-Item Short-Form Health Survey version 2 (SF-12v2) (a general health status measure) in patients undergoing rotator cuff repair (RCR).
- METHODS: A cohort of patients (n = 223) completed the WORC, SPADI, SST, DASH, and SF-12v2 preoperatively and at 3 and 6 months after RCR. Short-WORC scores were extracted from the WORC questionnaire. The construct validity (Pearson correlations) and internal responsiveness (effect size [ES], standardized response mean [SRM], relative efficiency [RE]) of the Short-WORC were calculated.
- **RESULTS:** The Short-WORC was strongly correlated with the WORC (r = 0.89-0.96) and moderately to strongly correlated with non-disease-specific measures at preoperative and postoperative assessments (r = 0.51-0.92). The Short-WORC and WORC were equally responsive (RE_{Short-WORC}, and WORC were equally responsive overall at 0 to 3 months (ES_{Short-WORC}, 0.72; ES_{WORC}, 0.92; SRM_{Short-WORC}, 0.75; SRM_{WORC}, 0.81) and 0 to 6 months (ES_{Short-WORC}, 0.89). The responsiveness of the comparator measures (SPADI, SST, DASH, SF-12v2) was poor to moderate at 0 to 3 months (ES, 0.07-0.55; SRM, 0.09-0.49) and 0 to 6 months (ES, 0.05-0.78; SRM, 0.07-0.78).
- **CONCLUSION:** The Short-WORC and WORC have similar responsiveness in patients undergoing RCR, and are more responsive than non-disease-specific measures. Future studies should focus on validation of the Short-WORC in samples representing the spectrum of rotator cuff disorders. *J Orthop Sports Phys Ther 2018;48*(5):409-418. doi:10.2519/jospt.2018.7928
- KEY WORDS: quality of life, rotator cuff repair, shoulder pain, validity, Western Ontario Rotator Cuff Index (WORC)

improve functional ability HRQoL. 23,32,60 Preoperatively and postoperatively, people with RCD may be assessed using disease-specific, jointspecific, region-specific, and general patient-reported outcome measures (PROs).13 The Western Ontario Rotator Cuff Index (WORC), developed by Kirkley et al,32 is one of the most validated disease-specific HRQoL questionnaires for patients with RCDs. 11,26,41,49,56 In 2012, Razmjou et al⁵¹ proposed a shorter version of the WORC (Short-WORC) to address concerns about response burden and lack of factor validation.

The developers described the Short-WORC as a tool to evaluate activity limitation rather than HRQoL, and provided preliminary evidence that the responsiveness of the Short-WORC was similar to 2 joint-specific PROs, the Constant-Murley score and American Shoulder and Elbow Surgeons assessment form. ⁵¹ We have recently established reproducibility (reliability and agreement statistics) for the Short-WORC. ⁹ However, further study is required to establish the clinical measurement properties of the Short-WORC.

The primary purpose of this study was to determine the cross-sectional

and longitudinal construct validity and responsiveness of the Short-WORC and WORC in patients undergoing RCR. A secondary purpose was to compare these psychometric parameters of the Short-WORC and WORC to joint-specific (Shoulder Pain and Disability Index [SPADI], simple shoulder test [SST]), region-specific (Disabilities of the Arm, Shoulder and Hand questionnaire [DASH]), and general health status (Medical Outcomes Study 12-Item Short-Form Health Survey version 2 [SF-12v2]) measures.

METHODS

review of anonymized charts for patients who underwent RCR at St Joseph's Health Care in London, Ontario (Canada) from December 1997 to May 2012. Ethical approval to review the clinic's database registry to extract anonymized data was obtained from the Health Sciences Research Ethics Board of the University of Western Ontario in London, Ontario.

Patients

Patients between 18 and 85 years of age who were slated for RCR (any technique) and completed the WORC were eligible for participation. Those with a history of previous surgery, upper extremity fracture, or concomitant shoulder pathologies were excluded from the study.

Sample Description and Assessment Time Points

Patients (n = 223; 151 men, 72 women; mean \pm SD age, 56.70 \pm 11.08 years) completed the WORC, DASH, SPADI, SST, and SF-12v2 PROs at baseline (1-2 weeks before surgery) and follow-ups (3 months and 6 months post surgery). The Short-WORC scores were extracted from the completed WORC.

Questionnaires/PROs

The WORC is a reliable and validated disease-specific HRQoL PRO developed

for people with RCD.³² It consists of 21 items presented under 5 domains: physical symptoms (6 items), sports and recreation (4 items), work (4 items), lifestyle (4 items), and emotions (3 items). Each item is scored on a 0-to-100-mm visual analog scale, summing a total score ranging from 0 (best possible score) to 2100 (worst possible score). The raw WORC scores can also be expressed as a percentage. The questionnaire is considered incomplete and no score is generated when 10% of the responses are missing.³²

The 7-item Short-WORC data were extracted from the WORC.⁵¹ The Short-WORC consists of all items from the work (questions 11-14) and lifestyle (questions 15-18) domains, except 1 lifestyle item related to roughhousing (question 17). The total Short-WORC score varies from 0 (best possible score) to 700 (worst possible score). The raw Short-WORC scores can also be expressed as a percentage. Any missing items render the Short-WORC questionnaire incomplete, and no score can be generated.⁵¹

The SPADI⁵³ is a reliable, 3 valid, 5,53,60 and responsive3,24 joint-specific PRO to assess pain and disability specific to shoulder pathology. The 13-item SPADI53,62 contains 2 subscales: pain and disability. The SST is a reliable, 20 valid, and responsive 41,55 joint-specific PRO to assess functional disability. It consists of 12 items with a yes/no response format that ask about the function of the involved shoulder. The DASH is a reliable, valid, and responsive regionspecific PRO that assesses symptoms and upper extremity function in patients with upper extremity disorders, including RCD.5,27,33,40 The SF-12v2 is a reliable and valid^{7,58} 12-item general health status survey²⁹ expressed as physical component summary (PCS) and mental component summary (MCS) scores.

Statistical Analysis

All analyses were conducted using SPSS for Windows Version 23 (IBM Corporation, Armonk, NY). The statistical significance was set at an alpha less than .05 at a 95% confidence interval (CI). Descriptive

statistics were examined to determine data distributions and floor and ceiling effects. For the Short-WORC and WORC, floor and ceiling effects were deemed to be present when the total score in 15% of the sample fell within 0 to 10 (minimal scores) or 90 to 100 (maximal scores), respectively.^{10,43}

Validity and Responsiveness

Construct Validity³⁴ We assessed construct validity by evaluating the extent to which the PRO demonstrated relationships consistent with theoretically assumed relationships between the attributes of pain, disability, function, and HRQoL.

Known-Group Validity Prior literature suggests that patients with workers' compensation (WC)^{2,44,59} and female patients⁵⁰ have poorer outcomes after RCR. Hence, we determined cross-sectional and longitudinal known-group validity using the variables of WC status and sex.²⁶

Cross-sectional Known-Group Validity Independent *t* tests were used to evaluate whether Short-WORC and WORC scores were different based on WC status or sex.

Longitudinal Known-Group Validity Independent t tests were used to test longitudinal differences in Short-WORC and WORC scores from baseline to follow-up assessments (0 to 3 and 0 to 6 months) for known groups.

Convergent Construct Validity Convergent construct validity^{16,57} was assessed by correlating the Short-WORC and WORC scores with measures that are expected to evaluate similar constructs.

Cross-sectional Construct Validity Pearson correlation coefficients (r) with 95% CIs were calculated to examine the relationship of the Short-WORC and WORC with joint-specific (SPADI, SST), region-specific (DASH), and general health status (SF-12v2) measures at baseline and follow-ups. Correlation coefficients of 0.00 to 0.19 were defined as very weak, 0.20 to 0.39 as weak, 0.40 to 0.69 as moderate, 0.70 to 0.89 as strong, and 0.90 to 1.00 as very strong. We used the

Fisher r-to-z transformation calculator³⁹ to assess differences in the relationships of the Short-WORC and WORC scores $(r_{\text{difference}} = r_{\text{Short-WORC}} - r_{\text{WORC}})$ when correlated with scores on joint-specific, region-specific, and general health status PROs at the 3 assessment time points. We tested the following a priori hypotheses: (1) the Short-WORC and WORC would have a strong positive correlation (r>0.70) with each other at baseline and follow-ups, and (2) the Short-WORC and WORC would have a similar and moderate correlation (r = 0.40-0.69) with other joint-specific, region-specific, and general health status questionnaires at baseline and follow-ups.

Longitudinal Construct Validity Also known as external responsiveness,28 for this measure, Pearson r values with 95% CIs were used to find the relationship between the change scores reported for different measures at baseline and follow-ups. We used the Fisher r-to-z transformation calculator to assess whether there were any significant differences $(r_{
m difference})$ between the relationship of change in Short-WORC and WORC scores when correlated with change in scores on joint-specific, region-specific, and general health status PROs at baseline and follow-ups. A priori hypotheses were as follows: (1) the change scores on the Short-WORC and WORC from baseline to follow-ups would have a strong correlation (r>0.70), and (2) the change scores on the Short-WORC and WORC from baseline to follow-ups would have a similar and moderate correlation (r = 0.40-0.69) with the change in other joint-specific, region-specific, and general health status PROs.

Internal Responsiveness We used the following responsiveness statistics to assess internal responsiveness of the Short-WORC and WORC:

1. Paired t test. As suggested by Juniper et al³⁰ and others, ^{28,31,37} we used paired t test statistics to test the hypothesis that within-subject changes in scores on the Short-WORC and WORC between baseline and follow-

ups would be statistically significantly different. As suggested by Liang et al, ³⁶ we used paired t statistics to determine relative efficiency (RE) of the Short-WORC compared to the WORC. Relative efficiency was computed by squaring the ratio of paired t tests for the Short-WORC and WORC (RE_{Short-WORC/WORC} = $[t_{Short-WORC/}t_{WORC}]^2$, where t is the mean difference/[SD of mean difference/[SD of mean difference/[T]]. An RE greater than 1 (or RE less than 1) indicated that the Short-WORC was a more (or less) efficient tool for measuring change than the WORC. ³⁶

TAB

- Similarly, we also computed the RE of the Short-WORC in comparison to other conventionally used upper extremity measures.
- 2. Effect size (ES) 1, also known as standardized effect size, 4,17,28 is defined as the ratio of mean change scores ($\delta_{\chi} = x2 x1$) to the standard deviation of baseline scores (SD_{baseline}), where δ_{χ} is mean change and x1 and x2 represent mean scores assessed at baseline and follow-up assessments, respectively.
- 3. Effect size 2, also known as standardized response mean (SRM), is

SLE 1	Baseline Characteristics of the Study
LE I	Population (n = 223)*

Variable	Value	Variable	Value
Age, y [†]	56.7 ± 11.1	Workers' compensation involved (n = 211)	95
Sex (n = 223)	100	No (n = 136)	64
Male (n = 151)	68	Yes (n = 68)	32
Female (n = 72)	32	Pending (n = 7)	3
Affected shoulder (n = 222)	99	Highest education level (n = 208)	93
Left (n = 93)	42	Some grade school (n = 6)	3
Right (n = 128)	58	Finished grade school (n = 20)	10
Both (n = 1)	0.4	Some high school (n = 45)	22
Hand dominance (n = 220)	99	Finished high school (n = 36)	17
Left (n = 30)	14	Some college/technical/diploma	16
Right (n = 190)	86	program (n = 33)	
Medication used before surgery (n = 209)	94	Finished college/technical/diploma	14
Yes (n = 104)	49	program (n = 30)	
No (n = 105)	50	Some university (n = 18)	9
Injections used before surgery (n = 212)	95	Finished university (n = 11)	5
Yes (n = 99)	47	Some graduate work at university	2
No (n = 113)	53	(n = 4)	0
Employment status at enrollment (n = 213)	95	Finished graduate work at university (n = 5)	2
Full-time regular duties (n = 62)	29	Smoker (n = 207)	93
Part-time regular duties (n = 10)	5	No (n = 82)	39
Full-time light duties (n = 19)	9	Yes (n = 45)	22
Part-time light duties (n = 8)	4	I quit (n = 80)	39
Unable to work because of injury (n	22	Alcohol (n = 210)	94
= 47)	LL	Never $(n = 40)$	19
Unable to work for other medical	4	Occasionally (n = 103)	49
reasons (n = 9)		1-6 drinks per week (n = 32)	15
Homemaker (n = 2)	1	7-14 drinks per week (n = 23)	11
Retired (n = 56)	26	15+ drinks per week (n = 12)	5

^{*}Values are percent unless otherwise indicated.

 $^{^{\}dagger}Values~are~mean \pm SD.$

defined as the ratio of mean change scores ($\delta_{\chi} = x2 - x1$) to the standard deviation reflecting the variability of change scores ($\text{SD}\delta_{\chi}$). ^{28,35} The SRM is the most widely accepted responsiveness statistic, because SRM is not dependent on either the standard deviation of baseline scores (as for ES 1) or the sample size (as for the paired t test). ^{6,28,48} We computed 95% CIs for SRMs by the bootstrap method, using Stata Version 12

software (StataCorp LLC, College Station, TX).⁶ For the purpose of clinical decision making, we used Cohen's benchmark to indicate the magnitude of responsiveness indices (ES 1 and ES 2): trivial (less than 0.2), small (0.2 or greater to less than 0.5), moderate (0.5 or greater to less than 0.8), or large (0.8 or greater).⁸ We expected the Short-WORC and WORC to have similar magnitudes of responsiveness.

FLOOR AND CEILING EFFECTS TABLE 2 FOR THE SHORT-WORC AND WORC $\mathsf{Mean} \pm \mathsf{SD}$ Time Point/Measure Median (IQR) Floor Effect, % Ceiling Effect, % **Baseline** 39/207 = 18.8 Short-WORC (n = 207) 30.2 ± 20.3 28.0 (29.3) 1/207 = 0.004WORC (n = 213) 32.3 ± 18.0 30.7 (25.5) 25/213 = 12.0 0/213 = 06-month follow-up Short-WORC (n = 183) 60.4 (48.9) 26/183 = 14.2 56.8 ± 28.5 11/183 = 6.0

Abbreviations: IQR, interquartile range; Short-WORC, short version of the Western Ontario Rotator Cuff Index; WORC, Western Ontario Rotator Cuff Index.

59.9 (46.9)

 56.8 ± 27.9

TABLE 3

WORC (n = 190)

Cross-sectional and Longitudinal Known-Group Validity: With and Without WC

10/190 = 5.2

Without

26/190 = 13.7

P Value

Mean

With WC*	WC*	Difference	(2 Tailed)
		21110101100	(Z idlieu)
24.6 ± 18.5	32.9 ± 21.1	8.4	<.01†
25.5 ± 16.2	35.5 ± 18.7	9.9	<.01†
40.4 ± 25.3	66.4 ± 26.4	26.0	<.01†
40.7 ± 25.1	66.1 ± 25.2	25.3	<.01†
-6.7 ± 15.4	-18.2 ± 23.6	-11.4	<.01†
-11.3 ± 14.9	-19.1 ± 24.2	-7.8	.01 [‡]
-15.4 ± 22.6	-33.9 ± 26.6	-18.5	<.01†
-14.9 ± 21.4	-30.7 ± 25.6	-15.8	<.01†
	25.5 ± 16.2 40.4 ± 25.3 40.7 ± 25.1 -6.7 ± 15.4 -11.3 ± 14.9 -15.4 ± 22.6	25.5 ± 16.2 35.5 ± 18.7 40.4 ± 25.3 66.4 ± 26.4 40.7 ± 25.1 66.1 ± 25.2 -6.7 ± 15.4 -18.2 ± 23.6 -11.3 ± 14.9 -19.1 ± 24.2 -15.4 ± 22.6 -33.9 ± 26.6	25.5 ± 16.2 35.5 ± 18.7 9.9 40.4 ± 25.3 66.4 ± 26.4 26.0 40.7 ± 25.1 66.1 ± 25.2 25.3 -67 ± 15.4 -18.2 ± 23.6 -11.4 -11.3 ± 14.9 -19.1 ± 24.2 -7.8 -15.4 ± 22.6 -33.9 ± 26.6 -18.5

 $Abbreviations: Short-WORC, short \ version \ of the \ Western \ Ontario \ Rotator \ Cuff \ Index; \ WC, workers' compensation; \ WORC, Western \ Ontario \ Rotator \ Cuff \ Index.$

*Values are mean \pm SD.

 † Statistically significant difference (P \leq .001).

*Statistically significant difference (P<.05).

RESULTS

the study population and sample size for each variable are presented in TABLE 1. All patients did not complete all measures at all time points, and the sample size for each evaluation is reported with each analysis.

Floor and Ceiling Effects

The number of patients with minimal or maximal Short-WORC and WORC scores is summarized in **TABLE 2**. No ceiling effects were observed at any time point. No floor effects were observed for the WORC at baseline or 6 months, and for the Short-WORC at 6 months. Floor effects were observed at baseline for 18.8% on the Short-WORC.

Cross-sectional Known-Group Validity

In TABLE 3, we show that Short-WORC and WORC scores were significantly different based on WC status (P<.001) at both baseline (mean difference [D]: D_{Short-WORC}, 8.4; D_{WORC} , 9.9) and 6 months ($D_{Short-WORC}$, 26.0; D_{WORC} , 25.3). TABLE 4 shows that Short-WORC scores were significantly different (P≤.01) among women and men at both baseline ($D_{Short\text{-WORC}}$, 16.4) and 6 months (D_{Short-WORC}, 11.6). In comparison, the WORC could discriminate significant sex differences only at baseline (Dword, 12.4; *P*<.001) (**TABLE 4**). However, at both baseline and 6 months, patients with WC and women reported lower scores on the Short-WORC and WORC than those without WC and men (TABLES 3 and 4).

Longitudinal Known-Group Validity

TABLE 3 summarizes the change in Short-WORC and WORC scores, which were significantly different (P≤.01) among those with or without WC when assessed from baseline to 3 months ($D_{\text{Short-WORC}}$, 11.4; D_{WORC} , 7.8) and 6 months ($D_{\text{Short-WORC}}$, 18.5; D_{WORC} , 15.8) post surgery. As summarized in **TABLE 4**, the changes from baseline scores on the Short-WORC and WORC were significantly different (P≤.01) among women and men at 3

months, but not 6 months, post surgery. At both follow-ups, patients with WC and women showed greater change in scores on the Short-WORC and WORC compared to those without WC and men (TABLES 3 and 4).

Cross-sectional Convergent Construct Validity

TABLE 5 presents the Pearson correlation coefficients for the Short-WORC and WORC with respect to each other and to the SPADI, SST, DASH, SF-12v2 PCS, and SF-12v2 MCS, assessed at 3 time points. As hypothesized, the Short-WORC was correlated with the WORC at baseline (preoperative, r = 0.92) and each follow-up (3 months, r = 0.89; 6 months, r = 0.96). Scores on both the Short-WORC and WORC were moderately (0.40 > r < 0.69)to strongly (r>0.70) related with jointspecific (SPADI, SST), region-specific (DASH), and general health status (SF-12v2 PCS, SF-12v2 MCS) PROs at all time points, with the exception of weak associations with scores on the SF-12v2 MCS at 3 months (r = 0.20-0.39). Among all PROs

evaluated, scores on the Short-WORC and WORC were strongly associated with the region-specific measure (DASH) at baseline, and with a joint-specific measure (SPADI) at 3 and 6 months post surgery. The Short-WORC and WORC showed moderate to strong association with the SST at all time points. In contrast, associations were lowest for the Short-WORC and WORC when compared with the general health status (SF-12v2 MCS) scores at all time points (TABLE 5). The relationships between Short-WORC and WORC scores and scores on other PROs were similar (TABLE 5), and there were no statistically significant differences in the relationships of the Short-WORC and WORC scores when correlated with scores on joint-specific, region-specific, and general health status PROs at 3 different time points $(r_{
m difference}$ data available in APPENDIX TABLE A, available at www.jospt.org).

Longitudinal Convergent Construct Validity (External Responsiveness)

As hypothesized, changes in Short-WORC and WORC scores demonstrated

strong and statistically significant correlations when assessed from baseline to 3 months (r = 0.86) and from baseline to 6 months (r = 0.92) (**TABLE 5**). The change in Short-WORC and WORC scores exhibited similar and moderate correlations (r =0.40-0.70) with changes from baseline in joint-specific (SPADI, SST), region-specific (DASH), and general health status (SF-12v2 PCS) PROs at 3- and 6-month follow-ups. The exception was the strong correlations (r>0.70) with change in SST score from baseline to 6 months for both the Short-WORC and WORC. Changes in Short-WORC and WORC scores showed weak (r = 0.20-0.39) correlations with change in SF-12v2 MCS score from baseline to follow-ups, which reached statistical significance at 6 months (TABLE 5). No statistically significant differences were observed in the magnitude of correlation coefficients for changes from baseline in Short-WORC and WORC scores and scores on the comparator PROs at followups ($r_{\text{difference}}$ data available in APPENDIX **TABLE B**, available at www.jospt.org).

Internal Responsiveness

TABLE 6 shows mean change scores for all PROs assessed at baseline and follow-up visits. Both the Short-WORC and WORC detected change over time when comparing preoperative and postoperative scores (P<.01). Similarly, all other upper extremity PROs detected change over time in our sample. TABLE 7 summarizes the calculations performed to determine the RE of the Short-WORC to evaluate change over time, in comparison to the RE of the WORC and the other PROs. The Short-WORC and the WORC evaluated change from baseline to 6 months with similar efficiency. The Short-WORC evaluated change at 3 and 6 months with more efficiency (RE greater than 1) than the joint-specific, region-specific, or general health status PROs.

TABLE 6 summarizes ES 1 and SRM, indicating good responsiveness of the Short-WORC and WORC. At 6 months, both the Short-WORC and WORC exhibited similarly large responsiveness (ES_{Short-WORC})

TABLE 4 GROUP VALIDITY: WOMEN AND MEN Mean P Value Type of Validity/Time Point or Interval/Measure Women* Men* Difference (2 Tailed) Cross-sectional known-group validity Baseline (women, n = 69; men, n = 138) Short-WORC 19.3 ± 15.4 35.6 ± 20.3 16.4 .001[†] WORC 24.0 ± 15.6 36.4 ± 18.1 12.4 .001[†] 6-month follow-up (women, n = 62; men, n = 120) 11.6 .01[‡] Short-WORC 49.0 ± 32.8 60.7 ± 25.4 WORC 52.1 ± 31.6 59.1 ± 25.3 6.9 .13 Longitudinal known-group validity

 -20.7 ± 20.5

 -23.8 ± 22.3

 -30.7 ± 28.1

 -28.1 ± 27.7

 -11.9 ± 22.2

 -13.2 ± 21.0

 -25.2 ± 25.7

 -23.0 ± 23.7

8.8

10.5

5.5

5.1

.001†

.001[†]

.20

.21

CROSS-SECTIONAL AND LONGITUDINAL KNOWN-

Abbreviations: Short-WORC, short version of the Western Ontario Rotator Cuff Index; WORC, Western Ontario Rotator Cuff Index.

Short-WORC

Short-WORC

WORC

WORC

 $^{\dagger}Statistically\ significant\ difference\ (P \!\!\leq \!\!. 001).$

0-3 months (women, n = 58; men, n = 113)

0-6 months (women, n = 59; men, n = 108)

 ${}^{\ddagger}Statistically\ significant\ difference\ (P<.05).$

^{*}Values are mean \pm SD.

1.05; ES $_{\rm WORC}$, 1.12; SRM $_{\rm Short\text{-}WORC}$, 0.89; SRM $_{\rm WORC}$, 0.89). From 0 to 3 months, the WORC showed large responsiveness (ES $_{\rm WORC}$, 0.92; SRM $_{\rm WORC}$, 0.81) in comparison to the moderate responsiveness of the Short-WORC (ES $_{\rm Short\text{-}WORC}$, 0.72; SRM $_{\rm Short\text{-}WORC}$, 0.75). Over both follow-up periods, disease-specific measures (Short-WORC and WORC) were more responsive than joint-specific, region-specific, and general health status PROs.

DISCUSSION

the validity and responsiveness characteristics of the 7-item Short-WORC as being similar to the full-length 21-item WORC. Also, both versions of the WORC were more responsive in comparison to the joint-specific, region-specific, and general health status outcome mea-

sures. Razmjou et al⁵¹ evaluated measurement properties of the Short-WORC at a follow-up of 6 months, while we included follow-ups of 3 and 6 months in our study and used more extensive analysis on validity and responsiveness. The lack of studies on measurement properties of the Short-WORC and WORC limited our ability to compare performance to other samples or contexts. Our study provided novel data regarding floor and ceiling effects and determined that the only potential concern for the Short-WORC were the minimal floor effects (18.8%) at baseline in our study sample, which slightly exceeded the common threshold of 15%. While this might suggest caution in using the Short-WORC to evaluate worsening, we did not notice any floor and ceiling effects on the Short-WORC in our recent study9 evaluating the reproducibility of the Short-WORC in a similar sample.

Also, there were no floor and ceiling effects on the translated versions of the 21item WORC.^{10,14,61}

The known-group validity of the Short-WORC reported in our study was consistent with findings in the previous literature that patients with WC^{2,44,59} and female patients⁵⁰ often report poorer outcomes. This confirms that the Short-WORC is equally able to discriminate these subgroups, but also suggests that Short-WORC scores should be stratified by sex and compensation status in future research.

The high correlation between the Short-WORC and WORC seen in our study was similar to the correlations reported by the developers of the Short-WORC and was not a surprising finding, as the Short-WORC items are a subset of the WORC.⁵¹ The moderate to strong correlations of the Short-WORC and WORC to the other PROs were also consistent

TABLE 5	Cross-sectional and Longitudinal Convergent Construct Validity*

Type of Validity/Time Point or Interval/						
Measure	WORC	SPADI	SST	DASH	SF-12v2 PCS	SF-12v2 MCS
Cross-sectional convergent construct						
validity						
Baseline (n = 88)						
Short-WORC	0.92 (0.88, 0.94)†	-0.63 (-0.73, -0.51) [†]	0.69 (0.58, 0.77)†	-0.77 (-0.83, -0.68) [†]	0.51 (0.36, 0.63)†	0.41 (0.25, 0.55)†
WORC	1	-0.63 (-0.73, -0.51) [†]	0.68 (0.57, 0.76)†	-0.82 (-0.87, -0.75) [†]	0.53 (0.39, 0.64)†	0.48 (0.33, 0.60)†
3-month follow-up (n = 83)						
Short-WORC	0.89 (0.84, 0.92)†	-0.82 (-0.87, -0.75) [†]	0.58 (0.44, 0.68)†	-0.73 (-0.80, -0.63) [†]	0.61 (0.48, 0.71)†	0.38 (0.21, 0.53)†
WORC	1	-0.80 (-0.85, -0.72) [†]	0.53 (0.38, 0.67)†	-0.69 (-0.77, -0.58) [†]	0.60 (0.47, 0.70)†	0.35 (0.18, 0.50)†
6-month follow-up (n = 99)						
Short-WORC	0.96 (0.94, 0.97)‡	-0.92 (-0.94, -0.89) [†]	0.87 (0.82, 0.90)†	-0.86 (-0.89, -0.81) [†]	0.77 (0.69, 0.83)†	0.52 (0.38, 0.63)†
WORC	1	-0.89 (-0.92, -0.85) [†]	0.84 (0.78, 0.88)†	-0.84 (-0.88, -0.78) [†]	0.76 (0.68, 0.82)†	0.58 (0.45, 0.68)†
Longitudinal convergent construct validity						
(external responsiveness statistics)						
0-3 months (n = 53)						
Short-WORC	0.86 (0.79, 0.91)†	-0.62 (-0.74, -0.46) [†]	0.58 (0.40, 0.71)†	-0.70 (-0.80, -0.56) [†]	0.53 (0.34, 0.67)†	0.23 (0.00, 0.43)
WORC	1	-0.51 (-0.66, -0.31) [†]	0.53 (0.34, 0.67)†	-0.60 (-0.73, -0.43)†	0.55 (0.37, 0.69)†	0.32 (0.09, 0.51)‡
0-6 months (n = 61)						
Short-WORC	0.92 (0.88, 0.95)†	-0.69 (-0.79, -0.56) [†]	0.77 (0.67, 0.84)†	-0.64 (-0.79, -0.49) [†]	0.63 (0.48, 0.74)†	0.29 (0.08, 0.47)‡
WORC	1	-0.67 (-0.77, -0.53) [†]	0.75 (0.63, 0.83)†	-0.63 (-0.74, -0.48) [†]	0.56 (0.39, 0.69)†	0.39 (0.19, 0.56)†

Abbreviations: DASH, Disabilities of the Arm, Shoulder and Hand questionnaire; MCS, mental component summary; PCS, physical component summary; SF-12v2, Medical Outcomes Study 12-Item Short-Form Health Survey version 2; Short-WORC, short version of the Western Ontario Rotator Cuff Index; SPADI, Shoulder Pain and Disability Index; SST, simple shoulder test; WORC, Western Ontario Rotator Cuff Index.

 $[*]Values\ are\ Pearson\ r\ (95\%\ confidence\ interval).$

 $^{^{\}dagger}$ Statistically significant difference (P \leq .001).

^{*}Statistically significant difference (P<.05).

with previous studies.14,15,19,32,38,45,51 However, what was more important in this study was the finding that the sizes of these correlations were similar at all time points, regardless of which WORC version was used. The correlations between the Short-WORC and other measures were equivalent or higher than those for the WORC. However, this trend was opposite for the Short-WORC and SF-12v2 MCS (where the Short-WORC was 0.10 lower across all time points). We attribute this to the removal of the emotional constructs from the Short-WORC during its development. This confirms our conceptual concern about whether the Short-WORC should be called a HRQoL measure, as it no longer attempts to cross both the physical and mental domains of health. Also, the developers of the Short-WORC have described the role of the Short-WORC as evaluating activity limitation rather than quality of life.

Our findings are consistent with previous studies and the indications for surgery, in that the physical domains of health are more affected than mental health.41,56 This is not to say that mental health should not be considered, as it has been shown to worsen in those with poor outcomes following RCR41 and may be a predictor of outcome.46 It may best be addressed using relevant and validated scales, rather than a mental or emotional component of the WORC, arguing against the need to retain the original spectrum of content in the WORC. This is especially true in light of the positive measurement characteristics of the Short-WORC.

In the present study, both the Short-WORC and WORC were more responsive than the other measures evaluated. The Short-WORC had a lower ES during the first 3-month interval than the WORC. Perhaps this was due to small floor ef-

fects shown at baseline, but we do not want to overinterpret this trend, as the SRMs were similar and the RE did not indicate a cause for concern. Also, this could be because shorter versions are known to be somewhat compromised in content validity, and consequently need a larger sample to detect a change in the outcomes.37 The Short-WORC was almost as efficient as the WORC, and more efficient (RE greater than 1) than the SPADI, SST, DASH, and SF-12v2 during the first 3-month interval. The measures were less different on this parameter during the 6-month interval, especially when related with the SST and SPADI. As the Short-WORC and the SST are the 2 brief measures, the Short-WORC would be more efficient for early assessment, and this difference is less important for the longer term. Our findings are consistent with a previous study that reported that the WORC (SRM $_{WORC}$, 2.0)

TA		

Internal Responsiveness Indices: Mean Change, SRM (Bootstrapped), ES

Change Interval/Measure	t _o	Baseline*	Follow-up*	Change*†	SRM†‡	ES§
0-3 months (n = 53)						
Short-WORC	5.5	29.9 ± 23.4	46.9 ± 25.7	$16.9 \pm 22.5 (10.8, 23.1)^{II}$	0.75 (0.42, 1.20)	0.72
WORC	5.9	32.2 ± 20.9	51.6 ± 25.1	$19.4 \pm 23.9 \ (12.8, 25.9)^{\parallel}$	0.81 (0.48, 1.22)	0.92
SPADI	3.5	53.8 ± 26.2	40.6 ± 26.5	$13.2 \pm 27.5 (5.7, 20.7)^{\parallel}$	0.48 (0.21, 0.81)	0.50
SST	3.4	36.1 ± 24.4	47.1 ± 20.6	$10.9 \pm 23.6 \ (4.5, 17.4)^{II}$	0.46 (0.17, 0.84)	0.45
DASH	3.5	47.6 ± 18.7	37.1 ± 20.1	$10.4 \pm 21.3 \ (4.6, 16.2)^{\parallel}$	0.49 (0.20, 0.79)	0.55
SF-12v2 PCS	1.4	34.8 ± 9.2	36.5 ± 8.8	$1.6 \pm 8.6 (-0.7, 4.0)$	0.19 (0.08, 0.50)	0.18
SF-12v2 MCS	0.7	48.8 ± 14.0	49.7 ± 12.0	0.9 ± 10.3 (-1.8, 3.8)	-0.08 (-0.34, 0.18)	0.07
0-6 months (n = 61)						
Short-WORC	6.9	30.0 ± 23.0	54.4 ± 31.7	$24.4 \pm 27.4 (17.4, 31.4)^{\parallel}$	0.89 (0.67, 1.17)	1.05
WORC	6.9	32.7 ± 20.4	55.7 ± 30.8	$22.9 \pm 25.8 (16.4, 29.6)^{\parallel}$	0.89 (0.66, 1.17)	1.12
SPADI	6.1	57.2 ± 26.2	36.5 ± 31.1	$20.7 \pm 26.6 (13.9, 27.5)^{\parallel}$	0.77 (0.54, 1.05)	0.78
SST	6.1	35.6 ± 28.2	57.6 ± 31.9	$21.9 \pm 28.1 (14.8, 29.2)^{\parallel}$	0.78 (0.54, 1.08)	0.78
DASH	4.6	47.9 ± 21.2	35.9 ± 26.6	$11.9 \pm 20.4 (6.7, 17.2)^{\parallel}$	0.58 (0.37, 0.82)	0.56
SF-12v2 PCS	5.3	34.6 ± 8.2	39.5 ± 10.1	$4.9 \pm 7.3 \ (3.0, 6.8)^{\parallel}$	0.67 (0.48, 0.91)	0.59
SF-12v2 MCS	0.5	47.5 ± 12.8	48.2 ± 28.2	$0.7 \pm 9.7 (-1.8, 3.1)$	-0.07 (-0.33, 0.19)	0.05

Abbreviations: DASH, Disabilities of the Arm, Shoulder and Hand questionnaire; ES, effect size; MCS, mental component summary; PCS, physical component summary; SF-12v2, Medical Outcomes Study 12-Item Short-Form Health Survey version 2; Short-WORC, short version of the Western Ontario Rotator Cuff Index; SPADI, Shoulder Pain and Disability Index; SRM, standardized response mean; SST, simple shoulder test; t_o , the observed value of t on paired t test; WORC, Western Ontario Rotator Cuff Index.

^{*}Values are mean \pm SD.

 $^{^\}dagger Values~in~parentheses~are~95\%~confidence~interval.$

^{*}Mean change divided by the SD of change scores.

[§]Mean change divided by the SD of baseline scores.

[&]quot;Statistically significant mean change ($P \le .001$).

and the joint-specific measure (SRM_{SST}, 1.8) were more responsive than the region-specific measure (SRM_{DASH}, 1.6) and the general health status measures (SRM_{SF-12v2 PCS}, 0.97; SRM_{SF-12v2 MCS}, 0.05) to detect change at the 6-month followup.41 This is consistent with the narrow focus of disease-specific measures, which are known to capture various aspects of disease better than the measures that are broadly related to the disease condition.4,21,22 Our results were also consistent with other studies in which general HRQoL measures were least responsive when compared with the region- or jointspecific measures for upper extremity disorders.1,3,41,42

Our results contradicted those of other studies of WORC responsiveness. 12,13,49 Ekeberg et al13 found that the SPADI and Oxford Shoulder Score were more responsive than the WORC. However, they evaluated responsiveness at 2 and 6 weeks post surgery, whereas we performed assessments at 3 and 6 months. In another study⁴⁹ done on a small sample population (n = 41) with rotator cuff pathology, it was reported that the WORC was less responsive than the limb- or region-specific measures (SRM $_{WORC}$, 1.4; SRM $_{Upper}$ Extremity Functional Index, 1.5). However, the authors did not report lower limits of SRMs or the follow-up time points at which the postoperative assessments were done. Some variation can relate to time frames tested, populations, procedures, familiarity with the measures, literacy, culture, and other factors. Moreover, the best indicators of outcome measure performance are systematic reviews of the compiled best-quality evidence, and not individual studies. A recent systematic review⁵⁶ of PRO performance in patients with RCDs indicated that the WORC is the most responsive.

Strengths, Limitations, and Future Recommendations

Our study was based on a large prospective cohort of patients from a single center, where data were collected by blinded research assistants. However, some limitations should be acknowledged. First, we derived our prospective data from a clinical database and were unable to contact all eligible participants to ensure that the WORC was complete. Furthermore, scores for the Short-WORC were derived from the 7 items completed as part of the 21-item WORC. The additional 14 items may have influenced responses. While we could have administered the WORC and the Short-WORC separately, it would have been difficult to make the time long enough to prevent recall while ensuring their condition remained stable. Thus, using the extracted items is the most pragmatic design choice. Future studies should determine the measurement properties of the Short-WORC when administered independently from the additional 14 items from the full scale. Second, we did not do a priori sample-size calculations.

Nevertheless, our sample size was similar to comparator cross-sectional studies of the Short-WORC49 or WORC26,32 and longitudinal validity studies of the WORC,26,49 and our CIs suggest adequate precision. Third, our study population was not homogeneous, and we included patients with wide age ranges and with different surgical procedures, although this might be considered a strength, as it enhances generalizability. Last, we could not evaluate the minimal clinically important difference. Future studies should consider evaluating the minimal clinically important difference of the Short-WORC, compare ease and time required to complete the Short-WORC and WORC questionnaires, and continue to strengthen the cross-cultural translations available to improve access.

Despite the limitations, we were able to provide further insight and evidence regarding validity and responsiveness of the Short-WORC to assess change in outcomes in patients undergoing RCR. Furthermore, short questionnaires such as the Short-WORC might be more acceptable and preferable in both clinical and research settings, due to their comprehensiveness and low response burden.

CONCLUSION

PRO for evaluation of function in patients undergoing RCR. Both the Short-WORC and WORC showed similar validity and responsiveness characteristics and were more responsive than the SPADI, SST, DASH, and SF-12v2. This suggests that the Short-WORC is a preferable option for evaluation of outcomes in patients undergoing RCR.

Output

Description:

KEY POINTS

FINDINGS: Both the 7-item short version of the Western Ontario Rotator Cuff Index (Short-WORC) and 21-item Western Ontario Rotator Cuff Index (WORC) are valid and responsive disease-specific patient-reported outcome measures to

TABLE 7 RELATIVE EFFICIENCY OF THE SHORT-WORC VERSUS THE WORC TO DETECT CHANGE OVER TIME*

Change Interval	Short-WORC/ WORC	Short-WORC/ SPADI	Short- WORC/SST	Short- WORC/DASH	Short-WORC/ SF-12v2 PCS	Short-WORC/ SF-12v2 MCS	
0-3 months (n = 53)	0.93	1.6	1.6	1.5	3.9	8.0	
0-6 months (n= 61)	1.00	1.1	1.1	1.5	1.3	12.9	

Abbreviations: DASH, Disabilities of the Arm, Shoulder and Hand questionnaire; MCS, mental component summary; PCS, physical component summary; RE, relative efficiency; SF-12v2, Medical Outcomes Study 12-Item Short-Form Health Survey version 2; Short-WORC, short version of the Western Ontario Rotator Cuff Index; SPADI, Shoulder Pain and Disability Index; SST, simple shoulder test; WORC, Western Ontario Rotator Cuff Index.

*Values are relative efficiency, calculated as the squared ratio of the paired t tests, where t is the mean difference/ $\langle D \rangle$ of mean difference.

assess change in functional outcome among patients undergoing rotator cuff repair.

IMPLICATIONS: The 7-item Short-WORC can replace the 21-item WORC for assessing outcomes among patients undergoing rotator cuff repair.

CAUTION: A single study in a single tertiary care hospital may not generalize to other contexts.

REFERENCES

- Amadio PC, Silverstein MD, Ilstrup DM, Schleck CD, Jensen LM. Outcome after Colles fracture: the relative responsiveness of three questionnaires and physical examination measures. J Hand Surg Am. 1996;21:781-787. https://doi.org/10.1016/S0363-5023(96)80192-4
- Balyk R, Luciak-Corea C, Otto D, Baysal D, Beaupre L. Do outcomes differ after rotator cuff repair for patients receiving workers' compensation? Clin Orthop Relat Res. 2008;466:3025-3033. https://doi.org/10.1007/ s11999-008-0475-1
- **3.** Beaton D, Richards RR. Assessing the reliability and responsiveness of 5 shoulder questionnaires. *J Shoulder Elbow Surg.* 1998;7:565-572.
- 4. Beaton DE, Hogg-Johnson S, Bombardier C. Evaluating changes in health status: reliability and responsiveness of five generic health status measures in workers with musculoskeletal disorders. J Clin Epidemiol. 1997;50:79-93.
- 5. Beaton DE, Katz JN, Fossel AH, Wright JG, Tarasuk V, Bombardier C. Measuring the whole or the parts? Validity, reliability, and responsiveness of the Disabilities of the Arm, Shoulder and Hand outcome measure in different regions of the upper extremity. J Hand Ther. 2001;14:128-146. https://doi.org/10.1016/S0894-1130(01)80043-0
- Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps: a non-parametric approach to confidence interval estimation. *Health Econ*. 1997;6:327-340.
- 7. Cheak-Zamora NC, Wyrwich KW, McBride TD. Reliability and validity of the SF-12v2 in the medical expenditure panel survey. Qual Life Res. 2009;18:727-735. https://doi.org/10.1007/ s11136-009-9483-1
- 8. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates: 1988.
- Dewan N, MacDermid JC, MacIntyre N, Grewal R. Reproducibility: reliability and agreement of short version of Western Ontario Rotator Cuff Index (Short-WORC) in patients with rotator cuff disorders. J Hand Ther. 2016;29:281-291. https:// doi.org/10.1016/j.jht.2015.11.007
- **10.** de Witte PB, Henseler JF, Nagels J, Vliet Vlieland TP, Nelissen RG. The Western Ontario Rotator

- Cuff Index in rotator cuff disease patients: a comprehensive reliability and responsiveness validation study. *Am J Sports Med.* 2012;40:1611-1619. https://doi.org/10.1177/0363546512446591
- 11. Diniz Lopes A, Ciconelli RM, Carrera EF, Griffin S, Faloppa F, Baldy dos Reis F. Comparison of the responsiveness of the Brazilian version of the Western Ontario Rotator Cuff Index (WORC) with DASH, UCLA and SF-36 in patients with rotator cuff disorders. Clin Exp Rheumatol. 2009;27:758-764.
- 12. Dogu B, Sahin F, Ozmaden A, Yilmaz F, Kuran B. Which questionnaire is more effective for follow-up diagnosed subacromial impingement syndrome? A comparison of the responsiveness of SDQ, SPADI and WORC index. J Back Musculoskelet Rehabil. 2013;26:1-7. https://doi.org/10.3233/BMR-2012-0342
- Ekeberg OM, Bautz-Holter E, Keller A, Tveitå EK, Juel NG, Brox JI. A questionnaire found diseasespecific WORC index is not more responsive than SPADI and OSS in rotator cuff disease. J Clin Epidemiol. 2010;63:575-584. https://doi. org/10.1016/j.jclinepi.2009.07.012
- 14. Ekeberg OM, Bautz-Holter E, Tveitå EK, Keller A, Juel NG, Brox JI. Agreement, reliability and validity in 3 shoulder questionnaires in patients with rotator cuff disease. BMC Musculoskelet Disord. 2008;9:68. https://doi. org/10.1186/1471-2474-9-68
- 15. El O, Bircan C, Gulbahar S, et al. The reliability and validity of the Turkish version of the Western Ontario Rotator Cuff Index. Rheumatol Int. 2006;26:1101-1108. https://doi.org/10.1007/ s00296-006-0151-2
- 16. Finch E, Brooks D, Stratford P, Mayo N. Physical Rehabilitation Outcome Measures: A Guide to Enhanced Clinical Decision Making. 2nd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2002.
- 17. Fitzpatrick R, Ziebland S, Jenkinson C, Mowat A, Mowat A. A comparison of the sensitivity to change of several health status instruments in rheumatoid arthritis. *J Rheumatol*. 1993;20:429-436.
- **18.** Fowler J, Jarvis P, Chevannes M. *Practical Statistics for Nursing and Health Care*. West Sussex, UK: John Wiley & Sons; 2002.
- Getahun TY, MacDermid JC, Patterson SD.
 Concurrent validity of patient rating scales in assessment of outcome after rotator cuff repair.
 J Musculoskelet Res. 2000;4:119-127. https://doi.org/10.1142/S02189577000015X
- 20. Godfrey J, Hamman R, Lowenstein S, Briggs K, Kocher M. Reliability, validity, and responsiveness of the simple shoulder test: psychometric properties by age and injury type. J Shoulder Elbow Surg. 2007;16:260-267. https://doi. org/10.1016/j.jse.2006.07.003
- Guyatt GH, Bombardier C, Tugwell PX. Measuring disease-specific quality of life in clinical trials. CMAJ. 1986;134:889-895.
- **22.** Guyatt GH, Deyo RA, Charlson M, Levine MN, Mitchell A. Responsiveness and validity in health

- status measurement: a clarification. *J Clin Epidemiol*. 1989;42:403-408.
- Guyatt GH, Ferrans CE, Halyard MY, et al. Exploration of the value of health-related quality-of-life information from clinical research and into clinical practice. Mayo Clin Proc. 2007;82:1229-1239.
- 24. Heald SL, Riddle DL, Lamb RL. The Shoulder Pain and Disability Index: the construct validity and responsiveness of a region-specific disability measure. Phys Ther. 1997;77:1079-1089. https://doi.org/10.1093/ptj/77.10.1079
- Herberts P, Kadefors R, Högfors C, Sigholm G. Shoulder pain and heavy manual labor. Clin Orthop Relat Res. 1984:166-178.
- Holtby R, Razmjou H. Measurement properties of the Western Ontario rotator cuff outcome measure: a preliminary report. J Shoulder Elbow Surg. 2005;14:506-510. https://doi.org/10.1016/j. jse.2005.02.017
- 27. Hudak PL, Amadio PC, Bombardier C, et al.

 Development of an upper extremity outcome measure: the DASH (Disabilities of the Arm, Shoulder, and Hand) [corrected]. Am J Ind Med. 1996;29:602-608. https://doi.org/10.1002/(SICI)1097-0274(199606)29:6<602::AID-AJIM4>3.0.CO;2-L
- **28.** Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: a critical review and recommendations. *J Clin Epidemiol*. 2000;53:459-468.
- Jenkinson C, Layte R, Jenkinson D, et al. A shorter form health survey: can the SF-12 replicate results from the SF-36 in longitudinal studies? J Public Health Med. 1997;19:179-186.
- **30.** Juniper EF, Guyatt GH, Feeny DH, Ferrie PJ, Griffith LE, Townsend M. Measuring quality of life in children with asthma. *Qual Life Res.* 1996;5:35-46. https://doi.org/10.1007/BF00435967
- 31. Kawabata M, Miyata T, Nakai D, et al. Reproducibility and validity of the Japanese version of the Western Ontario Rotator Cuff Index. J Orthop Sci. 2013;18:705-711. https://doi. org/10.1007/s00776-013-0426-x
- 32. Kirkley A, Alvarez C, Griffin S. The development and evaluation of a disease-specific quality-of-life questionnaire for disorders of the rotator cuff: the Western Ontario Rotator Cuff Index. Clin J Sport Med. 2003;13:84-92.
- 33. Kirkley A, Griffin S, McLintock H, Ng L. The development and evaluation of a disease-specific quality of life measurement tool for shoulder instability. The Western Ontario Shoulder Instability Index (WOSI). Am J Sports Med. 1998;26:764-772. https://doi.org/10.1177/036354 65980260060501
- **34.** Kirshner B, Guyatt G. A methodological framework for assessing health indices. *J Chronic Dis.* 1985;38:27-36.
- **35.** Liang MH, Fossel AH, Larson MG. Comparisons of five health status instruments for orthopedic evaluation. *Med Care*. 1990;28:632-642.
- 36. Liang MH, Larson MG, Cullen KE, Schwartz

- JA. Comparative measurement efficiency and sensitivity of five health status instruments for arthritis research. *Arthritis Rheum*. 1985;28:542-547.
- 37. Locker D, Jokovic A, Clarke M. Assessing the responsiveness of measures of oral health-related quality of life. Community Dent Oral Epidemiol. 2004;32:10-18. https://doi. org/10.1111/j.1600-0528.2004.00114.x
- Lopes AD, Ciconelli RM, Carrera EF, Griffin S, Faloppa F, dos Reis FB. Validity and reliability of the Western Ontario Rotator Cuff Index (WORC) for use in Brazil. Clin J Sport Med. 2008;18:266-272. https://doi.org/10.1097/JSM.0b013e31817282f4
- Lowry R. Significance of the difference between two correlation coefficients. Available at: http:// vassarstats.net/rdiff.html. Accessed November 1, 2014.
- MacDermid JC. Outcome evaluation in patients with elbow pathology: issues in instrument development and evaluation. J Hand Ther. 2001;14:105-114. https://doi.org/10.1016/ S0894-1130(01)80040-5
- MacDermid JC, Drosdowech D, Faber K. Responsiveness of self-report scales in patients recovering from rotator cuff surgery. J Shoulder Elbow Surg. 2006;15:407-414. https://doi. org/10.1016/j.jse.2005.09.005
- **42.** MacDermid JC, Ramos J, Drosdowech D, Faber K, Patterson S. The impact of rotator cuff pathology on isometric and isokinetic strength, function, and quality of life. *J Shoulder Elbow Surg*. 2004;13:593-598. https://doi.org/10.1016/j. jse.2004.03.009
- 43. McHorney CA, Tarlov AR. Individual-patient monitoring in clinical practice: are available health status surveys adequate? *Qual Life Res*. 1995;4:293-307. https://doi.org/10.1007/ BF01593882
- 44. Misamore GW, Ziegler DW, Rushton JL, 2nd. Repair of the rotator cuff. A comparison of results in two populations of patients. J Bone Joint Surg Am. 1995;77:1335-1339.
- **45.** Mousavi SJ, Hadian MR, Abedi M, Montazeri A. Translation and validation study of the Persian version of the Western Ontario Rotator Cuff Index. *Clin Rheumatol.* 2009;28:293-299. https://doi.org/10.1007/s10067-008-1042-6
- **46.** Oh JH, Yoon JP, Kim JY, Kim SH. Effect of expectations and concerns in rotator cuff

- disorders and correlations with preoperative patient characteristics. *J Shoulder Elbow Surg*. 2012;21:715-721. https://doi.org/10.1016/j. jse.2011.10.017
- 47. Östör AJ, Richards CA, Prevost AT, Speed CA, Hazleman BL. Diagnosis and relation to general health of shoulder disorders presenting to primary care. *Rheumatology (Oxford)*. 2005;44:800-805. https://doi.org/10.1093/rheumatology/keh598
- Prous MJ, Salvanés FR, Ortells LC. Responsiveness of outcome measures. Reumatol Clín. 2008;4:240-247. https://doi.org/10.1016/ S2173-5743(08)70197-7
- Razmjou H, Bean A, van Osnabrugge V, MacDermid JC, Holtby R. Cross-sectional and longitudinal construct validity of two rotator cuff disease-specific outcome measures. *BMC Musculoskelet Disord*. 2006;7:26. https://doi. org/10.1186/1471-2474-7-26
- 50. Razmjou H, Davis AM, Jaglal SB, Holtby R, Richards RR. Disability and satisfaction after rotator cuff decompression or repair: a sex and gender analysis. BMC Musculoskelet Disord. 2011;12:66. https://doi. org/10.1186/1471-2474-12-66
- 51. Razmjou H, Stratford P, Holtby R. A shortened version of the Western Ontario Rotator Cuff Disability Index: development and measurement properties. *Physiother Can*. 2012;64:135-144. https://doi.org/10.3138/ptc.2010-51
- 52. Rekola KE, Keinänen-Kiukaanniemi S, Takala J. Use of primary health services in sparsely populated country districts by patients with musculoskeletal symptoms: consultations with a physician. J Epidemiol Community Health. 1993;47:153-157. https://doi.org/10.1136/jech.47.2.153
- 53. Roach KE, Budiman-Mak E, Songsiridej N, Lertratanakul Y. Development of a shoulder pain and disability index. Arthritis Care Res. 1991;4:143-149.
- 54. Roquelaure Y, Ha C, Leclerc A, et al. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthritis Rheum. 2006;55:765-778. https://doi.org/10.1002/art.22222
- 55. Staquet M, Berzon R, Osoba D, Machin D. Guidelines for reporting results of quality of life assessments in clinical trials. Qual Life

- Res. 1996;5:496-502. https://doi.org/10.1007/ BF00540022
- 56. St-Pierre C, Desmeules F, Dionne CE, Frémont P, MacDermid JC, Roy JS. Psychometric properties of self-reported questionnaires for the evaluation of symptoms and functional limitations in individuals with rotator cuff disorders: a systematic review. *Disabil Rehabil*. 2016;38:103-122. https://doi.org/10.3109/09638288.2015.102 7004
- 57. Streiner DL, Norman GR. Health Measurement Scales: A Practical Guide to Their Development and Use. 4th ed. New York, NY: Oxford University Press: 2008.
- Ware J, Jr., Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. *Med Care*. 1996;34:220-233.
- Watson EM, Sonnabend DH. Outcome of rotator cuff repair. J Shoulder Elbow Surg. 2002;11:201-211. https://doi.org/10.1067/mse.2002.122271
- 60. Wessel RN, Lim TE, van Mameren H, de Bie RA. Validation of the Western Ontario Rotator Cuff index in patients with arthroscopic rotator cuff repair: a study protocol. *BMC Musculoskelet Disord*. 2011;12:64. https://doi. org/10.1186/1471-2474-12-64
- 61. Wessel RN, Wolterbeek N, Fermont AJ, et al. The conceptually equivalent Dutch version of the Western Ontario Rotator Cuff Index (WORC)©. BMC Musculoskelet Disord. 2013;14:362. https:// doi.org/10.1186/1471-2474-14-362
- **62.** Williams JW, Jr., Holleman DR, Jr., Simel DL. Measuring shoulder function with the Shoulder Pain and Disability Index. *J Rheumatol*. 1995;22:727-732.
- **63.** Zakaria D. Rates of carpal tunnel syndrome, epicondylitis, and rotator cuff claims in Ontario workers during 1997. *Chronic Dis Can.* 2004;25:32-39.
- **64.** Zakaria D, Robertson J, MacDermid JC, Hartford K, Koval J. Estimating the population at risk for Ontario Workplace Safety and Insurance Board-covered injuries or diseases. *Chronic Dis Can*. 2002;23:17-21.

VIEW Videos on JOSPT's Website

Videos posted with select articles on the *Journal's* website (**www.jospt.org**) show how conditions are diagnosed and interventions performed. To view the associated videos for an article, click on **Supplementary Material** and scroll down to stream the videos online or download them to your computer or device.

APPENDIX

Table ACross-sectional Convergent Construct Validity: Differences in the Relationships of the Short-WORC and WORC*

	0	•				
Time Point/Measure	WORC	SPADI	SST	DASH	SF-12v2 PCS	SF-12v2 MCS
Baseline (n = 88)						
Short-WORC	0.92 (0.88, 0.94)†	-0.63 (-0.73, -0.51) [†]	0.69 (0.58, 0.77)†	-0.77 (-0.83, -0.68) [†]	0.51 (0.36, 0.63)†	0.41 (0.25, 0.55)†
WORC	1	-0.63 (-0.73, -0.51) [†]	0.68 (0.57, 0.76)†	-0.82 (-0.87, -0.75) [†]	0.53 (0.39, 0.64)†	0.48 (0.33, 0.60)†
Difference [‡]		0 (z = 0, P = .5)	0.01 (z = 0.12, P = .45)	0.05 (z = 0.89, P = .18)	-0.02 ($z = -0.18$, $P = .43$)	-0.07 ($z = -0.57$, $P = .28$)
3-mo follow-up (n = 83)						
Short-WORC	0.89 (0.84, 0.92)†	-0.82 (-0.87, -0.75) [†]	0.58 (0.44, 0.68)†	-0.73 (-0.80, -0.63) [†]	0.61 (0.48, 0.71)†	0.38 (0.21, 0.53)†
WORC	1	-0.80 (-0.85, -0.72) [†]	0.53 (0.38, 0.67)†	-0.69 (-0.77 ,-0.58) [†]	0.60 (0.47, 0.70)†	0.35 (0.18, 0.50)†
Difference [‡]		-0.02 ($z = -0.37$, $P = .35$)	0.05 (z = 0.46, P = .32)	-0.04 ($z = -0.51$, $P = .30$)	0.01 (z = 0.1, P = .46)	0.03 (z = 0.22, P = .41)
6-mo follow-up (n = 99)						
Short-WORC	0.96 (0.94, 0.97)§	-0.92 (-0.94, -0.89)§	0.87 (0.82, 0.90)§	-0.86 (-0.89, -0.81)§	0.77 (0.69, 0.83)§	0.52 (0.38, 0.63)§
WORC	1	-0.89 (-0.92, -0.85)§	0.84 (0.78, 0.88)§	-0.84 (-0.88, -0.78)§	0.76 (0.68, 0.82)§	0.58 (0.45, 0.68)§
Difference [‡]		-0.03 ($z = -1.16$, $P = .12$)	0.03 (z = 0.78, P = .21)	-0.02 ($z = -0.5$, $P = .3$)	0.01 (z = 0.17, P = .43)	-0.06 ($z = -0.6$, $P = .27$)

Abbreviations: DASH, Disabilities of the Arm, Shoulder and Hand questionnaire; MCS, mental component summary; PCS, physical component summary; SF-12v2, Medical Outcomes Study 12-Item Short-Form Health Survey version 2; Short-WORC, short version of the Western Ontario Rotator Cuff Index; SPADI, Shoulder Pain and Disability Index; SST, simple shoulder test; WORC, Western Ontario Rotator Cuff Index.

 Table B

 Longitudinal Convergent Construct Validity: Differences in the Relationships of the Short-WORC and WORC*

Time Interval/Measure	WORC	SPADI	SST	SST DASH		SF-12v2 MCS
0-3 mo (n = 53)						
Short-WORC	0.86 (0.79, 0.91)†	-0.62 (-0.74, -0.46) [†]	0.58 (0.40, 0.71)†	-0.70 (-0.80, -0.56) [†]	0.53 (0.34, 0.67)†	0.23 (0.00, 0.43)
WORC	1	-0.51 (-0.66, -0.31) [†]	0.53 (0.34, 0.67)†	-0.60 (-0.73, -0.43) [†]	0.55 (0.37, 0.69)†	0.32 (0.09, 0.51)‡
Difference§		-0.11 ($z = -0.81$, $P = .21$)	0.05 (z = 0.36, P = .35)	-0.10 (z = -0.87, P = .2)	-0.02 ($z = -0.14$, $P = .44$)	-0.09 ($z = -0.49$, $P = .31$)
0-6 mo (n = 61)						
Short-WORC	0.92 (0.88, 0.95)†	-0.69 (-0.79, -0.56) [†]	0.77 (0.67, 0.84)†	-0.64 (-0.79,- 0.49) [†]	0.63 (0.48, 0.74)†	0.29 (0.08, 0.47)‡
WORC	1	-0.67 (-0.77, -0.53) [†]	0.75 (0.63, 0.83)†	-0.63 (-0.74,- 0.48) [†]	0.56 (0.39, 0.69)†	0.39 (0.19, 0.56)†
Difference§		-0.02 (z = -0.2 , $P = .42$)	0.02 (z = 0.26, P = .4)	-0.01 ($z = -0.09$, $P = .46$)	0.07 (z = -0.58, P = .28)	-0.10 ($z = -0.61$, $P = .27$)

Abbreviations: DASH, Disabilities of the Arm, Shoulder and Hand questionnaire; MCS, mental component summary; PCS, physical component summary; SF-12v2, Medical Outcomes Study 12-Item Short-Form Health Survey version 2; Short-WORC, short version of the Western Ontario Rotator Cuff Index; SPADI, Shoulder Pain and Disability Index; SST, simple shoulder test; WORC, Western Ontario Rotator Cuff Index.

 $[*]Values\ are\ Pearson\ r\ (95\%\ confidence\ interval)\ unless\ otherwise\ indicated.$

 $^{^{\}dagger}$ Statistically significant difference (P \leq .001).

 $^{^{\}ddagger}r_{difference} = r_{Short-WORC} - r_{WORC}$

 $[\]S Statistically \ significant \ difference \ (P<.05).$

 $[*]Values\ are\ Pearson\ r\ (95\%\ confidence\ interval)\ unless\ otherwise\ indicated.$

 $^{^{\}dagger}Statistically\ significant\ difference\ (P \!\leq\! .001).$

^{*}Statistically significant difference (P<.05).

 $r_{difference} = r_{Short-WORC} - r_{WORC}$

BRIAN J. ECKENRODE, PT, DPT, OCS12 • DAVID M. KIETRYS, PT, PhD, OCS2 • J. SCOTT PARROTT, PhD2

Effectiveness of Manual Therapy for Pain and Self-reported Function in Individuals With Patellofemoral Pain: Systematic Review and Meta-analysis

atellofemoral pain (PFP) is one of the most commonly reported conditions involving the lower extremity.^{20,21,55,62,68,69,78} The clinical presentation of PFP is often described as retropatellar and/or peripatellar knee pain, aggravated by prolonged sitting or loading activities such as stair climbing, squatting, running, jumping, or kneeling.^{14,76} Incidence is higher in females.^{20,21,71} Proposed etiological factors for PFP include abnormal patellar

- STUDY DESIGN: Systematic literature review with meta-analysis.
- BACKGROUND: Management of patellofemoral pain (PFP) may include the utilization of manual therapy (MT) techniques to the patellofemoral joint, surrounding soft tissues, and/or lumbopelvic region.
- OBJECTIVES: To determine the effectiveness of MT, used alone or as an adjunct intervention, compared to standard treatment or sham for reducing pain and improving self-reported function in individuals with PFP.
- METHODS: An electronic literature search was conducted in the PubMed, Ovid, Cochrane Central Register of Controlled Trials, and CINAHL databases for studies investigating MT for individuals with PFP. Studies published through August 2017 that compared MT (local or remote to the knee), used alone or in combination with other interventions, to control or sham interventions were included. Patient-reported pain and functional outcomes were collected and synthesized. Trials were assessed via the Cochrane risk-of-bias tool, and a meta-analysis of the evidence was performed.
- RESULTS: Nine studies were included in the review, 5 of which were rated as having a low risk

- of bias. The use of MT, applied to the local knee structure, was associated with favorable short-term changes in self-reported function and pain in individuals with PFP, when compared to a comparison (control or sham) intervention. However, the changes were clinically meaningful only for pain (defined as a 2-cm or 2-point improvement on a visual analog scale or numeric pain-rating scale). The evidence regarding lumbopelvic manipulation was inconclusive for pain improvement in individuals with PFP, based on 3 studies.
- CONCLUSION: The data from this review cautiously suggest that MT may be helpful in the short term for decreasing pain in patients with PFP. Several studies integrated MT into a comprehensive treatment program. Changes in self-reported function with the inclusion of MT were shown to be significant, but not clinically meaningful. The limitations in the studies performed to date suggest that future research should determine the optimal techniques and dosage of MT and perform longer follow-up to monitor long-term effects.
- LEVEL OF EVIDENCE: Therapy, level 1a.
 J Orthop Sports Phys Ther 2018;48(5):358-371.
 Epub 6 Jan 2018. doi:10.2519/jospt.2018.7243
- **KEY WORDS:** anterior knee pain, chondromalacia, manipulation, mobilization, patella

tracking, ^{27,31,61} poor hip control leading to altered lower extremity motion and mechanics, ^{44,54,61,65} and overtraining. ⁴⁶

Physical therapy management of PFP often addresses multiple impairments of the lower extremity believed to potentially contribute to the condition. A multimodal approach has been recommended, based on a recent systematic review combined with expert opinion.5 Knee orthoses have been proposed to address faulty patellar alignment, but there is a lack of evidence to support their effectiveness.63 Results are mixed for the effects of patellar-taping interventions.3,9,10,48 A recent Cochrane review concluded that evidence for exercise is of low quality; however, exercise may result in a clinically important reduction in pain and improvement in function.74 Strengthening exercises for the proximal musculature, with or without the inclusion of quadriceps rehabilitation, were found to be beneficial for pain and function in the short term and medium term.^{2,43} Barton et al⁵ recommended that treatment of PFP include patient education and activity modification, trunk/ hip and distal strengthening, and movement-pattern and gait retraining. Athletes with PFP should monitor training loads, as poorly managed training can increase risk of injury and/or prevent recovery.45,64

Arcadia University, Glenside, PA. 2School of Health Professions, Rutgers University, Newark, NJ. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Brian Eckenrode, Arcadia University, 450 South Easton Road, Glenside, PA 19038. E-mail: eckenrodeb@arcadia.edu • Copyright ©2018 Journal of Orthopaedic & Sports Physical Therapy®

While a growing body of literature supports the inclusion of strengthening exercises to target the lateral/posterior hip musculature,7,22-26,36,40,41,50 some studies have attempted to address PFP symptoms through the inclusion of manual therapy (MT). 6,13,14,16,17,28-30,34,37,47,49,58,66,73 Manual therapy may include techniques that address the patellofemoral joint, tibiofemoral joint, proximal tibiofibular joint, and proximal sites such as the lumbar spine and sacroiliac joint. Patellofemoral joint mobilizations and lateral knee soft tissue mobilization are theorized to decrease peripatellar soft tissue tightness associated with PFP.18 Manual therapy of the lumbar spine and sacroiliac joint has been shown to decrease quadriceps muscle inhibition.68,69 The improvements in function and pain following lumbopelvic manipulation in patients with PFP49 have been theorized to be the result of regional interdependence, a model that suggests an influence of impairment in a remote region.⁷⁵ Other possible mechanisms include a neurophysiological response resulting in decreased peripheral and central sensitization.⁵² A synthesis of the current evidence is needed to determine the role that MT can play in the rehabilitation of individuals with PFP.

The aim of this systematic review and meta-analysis was to evaluate and summarize the evidence for the effectiveness of MT interventions (used alone or in combination with other interventions), compared to other interventions, placebo, or sham, for pain and self-reported function in individuals with PFP.

METHODS

Search Strategy

had not yet been reviewed in the past 3 years, an initial search of the Cochrane Database of Systematic Reviews, Centre for Reviews and Dissemination, and PubMed databases was conducted in July 2016. This was followed by focused PubMed, Ovid, Cochrane Central Register of Controlled Trials, and CINAHL search-

es using the search terms outlined in the APPENDIX (available at www.jospt.org) and a manual search of the reference lists in the retrieved articles. The search was repeated in August 2017, 2 months before this review was accepted for publication, with 1 additional manuscript identified that met the inclusion criteria and was subsequently included in the review.

Inclusion and Exclusion Criteria

The review aimed to include only full-text articles of randomized controlled trials (RCTs) written in English. In addition, study participants had to have a diagnosis of anterior knee pain or PFP and no other knee pathologies. Studies had to include some form of MT intervention directed to the patellofemoral joint, soft tissues of the lower extremity, or lumbar spine/sacroiliac joint, used alone or in conjunction with other physical therapy interventions, and the outcomes had to include pain and/or self-reported functional questionnaires. For inclusion, the study had to include 10 or more participants, and the dropout rate had to be less than 20%. The cutoff of 10 or more participants was used to decrease the likelihood that findings were relevant only for an idiosyncratic set of individuals. A dropout rate of less than 20% was used to eliminate studies in which the risk of bias due to attrition could be high. The dropout rate of 20% or lower for inclusion in systematic reviews has been established by the National Heart, Lung, and Blood Institute as a quality assessment measure.⁵¹ No limit on publication date was imposed. Studies were excluded if participants had 2 or more comorbidities or were not diagnosed with patellofemoral knee pain.

Study Selection

Titles of identified citations were screened by the primary author to determine whether the title indicated that the study investigated a physical therapy or MT intervention for PFP. Abstracts of studies meeting these criteria were reviewed for appropriateness against

the inclusion/exclusion criteria, with 25 full-text articles further assessed for final selection. **FIGURE 1** provides a flow chart of the search and article-selection process.

Data Extraction

Data from retained articles were extracted by 2 investigators (B.J.E. and D.M.K.) and entered into the Systematic Review Data Repository (SRDR) website (http://srdr.ahrq.gov). The online data-extraction template was developed a priori and was used to collect information on participant characteristics, study design, study duration, intervention, outcomes (including results of statistical analyses), and funding sources. Data entry was audited, and any discrepancies were resolved via consensus between the 2 authors (B.J.E. and D.M.K.).

Risk of Bias

Review of study bias was assessed at the individual study level with the Cochrane risk-of-bias33 tool and recorded in the SRDR. This tool evaluates 7 risk-ofbias dimensions, using a 3-point scale that assigns a score of 0 for high risk, 1 for unclear risk, and 2 for low risk, for a maximum possible score of 14 points. Studies with a total of 11 or more points were given an overall rating of low bias, 7 to 10 points reflected moderate bias, and 6 or fewer points reflected high bias. Three reviewers (B.J.E., D.M.K., J.S.P.) independently assessed bias categories of each study, followed by a discussion of discrepancies to reach a consensus. Factors that were considered for additional bias included incomplete reporting and analysis, group similarity at baseline, different cointerventions across groups, inappropriate compliance, and timing of outcome assessment.

Data Analysis and Synthesis of Results

Compiled data were exported from SRDR into Open Meta-Analyst Version 0.1 (http://www.cebm.brown.edu/openmeta) for the meta-analysis. Continuous random-effects models of standardized mean differences (SMDs) were used for

the analysis of both primary and secondary outcomes. A limitation of the calculation of SMD is that it may not be optimally sensitive to imbalanced sample sizes.

As pain rating was reported with either a visual analog scale (VAS) or numeric pain-rating scale (NPRS), the data were analyzed using SMD. The NPRS has been shown to be a valid and reliable tool for assessing pain intensity.38,39,56 The minimal clinically important difference (MCID) has been reported to be between 1.5 points1 and 2 points59 for chronic musculoskeletal conditions. The VAS has demonstrated good test-retest reliability, with an MCID of 1.4 cm.70 Excellent correlation between the NPRS and VAS (r = 0.86) has been reported across varying age groups.32 Where applicable, data for "pain with activity" were utilized in studies that reported multiple measures of pain (ie, worst pain, least pain, resting pain, or pain with activity).

In the studies included in the review, self-reported function was reported with either the Anterior Knee Pain Scale (AKPS) or the Patient-Specific Functional Scale (PSFS). The AKPS consists of 13 questions that assess the difficulty that patients have performing functional lower extremity tasks, with a total score ranging from 0 to 100 and a score of 100 indicating no disability. This outcome has been shown to have high test-retest reliability and is moderately responsive to clinical change in patients with anterior knee pain. The AKPS has a minimal detectable change (MDC) of 13 points.

The PSFS has been shown to be a valid and reliable tool to assess change in patients with knee conditions. Individuals are asked to identify up to 5 important activities that they have difficulty performing or are unable to perform and to rate the level of difficulty on an 11-point scale, ranging from 0 ("unable to perform activity") to 10 ("able to perform activity at same level as before injury or problem"). The MDC for the PSFS in patients with knee dysfunction (PFP, osteoarthritis, postsurgical limitations, etc) has been reported to be 1.5 points. In

The AKPS and PSFS outcomes were analyzed using SMD, due to differences between scales. Forest plots included the standardized effect size calculated from the extracted data. Heterogeneity across the studies was quantified via I². Huedo-Medina et al³5 suggest that I² percentages of around 25%, 50%, and 75% indicate low, medium, and high heterogeneity, respectively.


Studies that reported a self-reported functional outcome score for MT directed to the patella, compared to a control or sham intervention, were included in the analysis. In addition, meta-analyses of self-reported pain were performed for studies that compared MT directed to the patella with a control (no intervention) or sham intervention, and for studies that compared a combined therapy of patellar MT and exercise with an alternative treatment. Qualitative analysis of all articles included risk-of-bias assessment.

RESULTS

Search Results

evant studies were identified. After excluding 120 articles based on a preliminary review of abstracts for inclusion and exclusion criteria, a total of 25 articles remained for full-text review. Sixteen studies were excluded after review of the full text, leaving 9 studies for the review and meta-analysis (FIGURE 1).6,13,14,29,49,58,66,72,73 Of the included articles, 5 noted dropouts, 13,14,66,72,73 but, of these, only 3 reported an intention-to-treat analysis. 13,14,73

TABLE 1 provides the study characteristics. The RCTs by van den Dolder and Roberts,⁷³ Collins et al,¹³ Crossley et al,¹⁴ and Rowlands and Brantingham⁵⁸ compared MT intervention at the patella for participants with PFP to a sham or control group. Four studies utilized a combination approach of MT directed to the patella and exercise intervention. ^{13,14,66,72} Three studies investigated the effectiveness of lumbar spine and sacroiliac joint mobilization/manipulation on patients

with PFP.^{6,49,66} The outcome assessments of the included studies ranged from immediately to 3 months post intervention, with 1 study¹³ providing follow-up data at 1 year.

TABLE 2 reports clinically meaningful change in pain and function. Two studies did not report data sufficient to determine clinically meaningful change. ^{49,58} Of the remaining 7 studies outlined in **TABLE 2**, 6

demonstrated a clinically meaningful improvement in pain scores where MT was included in the intervention. Among studies that included MT as part of a comprehensive intervention com-

	Study			Follow-up		
Study	Design	Participants†	Intervention	Period	Outcome Measure	Change [‡]
van den Dolder and Roberts ⁷³	RCT	MT: n = 21 (female, 81%; age, 55 ± 11 y); mean symptom duration, 26 wk; dropout rate, 0% Control: n = 17 (female, 62%; age, 52 ± 18 y); mean symptom duration, 39 wk; dropout rate, 1%	MT: transverse friction massage to the lateral retinaculum, PF joint tilt, sustained medial glide during repeated flexion and extension of the knee; 15-20 min of MT over 6 sessions in 2 wk Control: wait list	2 wk	Pain (100-mm VAS) Stair-climb test (number of steps climbed in 60 s)	 Within groups Pain: MT, -10 ± 16 (95% Cl: -17.28, -2.72; 20%); control, -2 ± 10 (95% Cl: -7.32, 3.33; 4%) Stair-climb test: MT, 5 ± 3 (95% Cl: 3.63, 6.37; 20%); control, -1 ± 5 (95% Cl: -3.66, 1.66; -4%) Between groups Pain: 8 (95% Cl: -17, 1; P = .08) Stair-climb test: 5 (95% Cl: 2, 8; P = .001)
Hains and Hains ²⁹	RCT	MT (local): n = 27 (female, 74%; age, 25.3 y); symptom duration, 2-8 y; dropout rate, 0% MT (remote): n = 11 (female, 73%; age, 25 y); symptom duration, 2-8 y; dropout rate, 0%	MT (local): ischemic compression therapy to trigger points in the peripatellar region (sustained digital pressure to the areas of elicited pain for between 5 and 15 s) MT (remote): ischemic compression therapy to trigger points in the gluteal region (sustained digital pressure to the areas of elicited pain for between 5 and 15 s)	4 wk	Pain (10-cm VAS)	Within groups • Pain: MT local, -3.57 ± 0.49 (95% CI: -3.76 , -3.38 60%); MT remote, -1.90 ± 0.81 (95% CI: -2.44 , -1.35 ; 28%) Between groups • Pain: -1.67 (95% CI: -2.18 , -1.16)
Collins et al ¹³	RCT	MT: n = 45 (female, 64.4%; age, 30.9 \pm 5.8 y); symptom duration, >6 wk; dropout rate, 7% Sham foot orthotics: n = 44 (female, 45.5%; age, 29 \pm 6.0 y); symptom duration, >6 wk; dropout rate, 7% Foot orthotics!: n = 46 (female, 54.3%; age, 27.9 \pm 5.3 y); symptom duration, >6 wk; dropout rate, 2% Foot orthotics and MT\$: n = 44 (female, 59.1%; age, 29.6 \pm 5.6 y); symptom duration, >6 wk; dropout rate, 2%	MT: patellar mobilization and patellar taping, plus quadriceps and hip external rotation strengthening and hamstring and anterior hip stretches; 6 sessions over 6 wk of 20 to 60 min Sham foot orthotics: flat shoe inserts Foot orthotics: prefabricated foot orthotic use Foot orthotics and MT: combined approach; 6 sessions over 6 wk of 20 to 60 min	6 wk, 12 wk, 52 wk	Pain (100-mm VAS) AKPS (0-100)	 Within groups for MT versus sham Pain at 6 wk: MT, -29.2 ± 26.64 (95% CI: -37.61, -20.79; 48%); sham, -8.6 ± 26.40 (95% CI: -17.04 -0.16; 18%) AKPS at 6 wk: MT, 11.7 ± 14.50 (95% CI: 7.12, 16.28 16%); sham, 2.7 ± 13.01 (95% CI: -1.46, 6.86; 4%, -26.04; 56%); sham, -21.6 ± 26.90 (95% CI: -43.16, -26.04; 56%); sham, -21.6 ± 26.90 (95% CI: -30.44, -12.76; 38%) AKPS at 12 wk: MT, 13.2 ± 15.02 (95% CI: 8.46, 17.94; 18%); sham, 8.8 ± 13.58 (95% CI: 4.33, 13.26; 12%) Pain at 52 wk: MT, -39.2 ± 28.37 (95% CI: -48.04, -30.36; 64%); sham, -30.5 ± 28.16 (95% CI: -39.39, -21.61; 54%) AKPS at 52 wk: MT, 16.2 ± 14.89 (95% CI: 11.56, 20.84; 23%); sham, 14.8 ± 13.43 (95% CI: 10.56, 19.04; 21%) Between groups Pain at 6 wk: -20.6 (95% CI: -32.15, -9.05) AKPS at 6 wk: 9.0 (95% CI: -30.00, 15.00) Pain at 12 wk: -13.0 (95% CI: -191, 10.70) Pain at 52 wk: -8.7 (95% CI: -191, 10.70) Pain at 52 wk: -8.7 (95% CI: -20.86, 3.46) AKPS at 52 wk: 14 (95% CI: -4.70, 7.50)

pared to a sham or control intervention, only Crossley et al¹⁴ found a clinically meaningful difference in self-reported pain in the MT group versus the control group. Clinical significance was found in 2 studies that examined the inclusion of local or remote MT as part of a

comprehensive intervention for patients with PFP.^{29,66} Four of the 7 studies found a clinically significant improvement in function, and groups that included MT with additional interventions achieved clinical meaningfulness.^{6,14,66,72} Other key findings germane to variables in the

studies included in the meta-analyses are summarized in TABLE 3.

Risk of Bias Within Studies

TABLE 4 outlines the ratings for each of the risk-of-bias categories. Five of the 9 studies were determined to have an overall low

TABLE 1			Qualitative and Q	UANTITA	TIVE SYNTHES	ES* (CONTINUED)
Study	Study Design	Participants†	Intervention	Follow-up Period	Outcome Measure	Change [‡]
Crossley et al ¹⁴	RCT	MT: n = 36 (female, 64%; age, 29 ± 8 y); symptom duration, NR; dropout rate, 8% Control: n = 35 (female, 66%; age, 26 ± 8 y); symptom duration, NR; dropout rate, 3%	MT: manual stretching of knee soft tissue structures, patellar taping, VMO and gluteal strengthening; 30 to 60 min, once weekly for 6 wk Control: placebo taping, sham ultrasound, nontherapeutic gel; 30 to 60 min, once weekly for 6 wk	6 wk	Pain (10-cm VAS) AKPS (0-100)	Within groups Pain: MT, -4.0 ± 2.5 (95% CI: -4.89, -3.11; 57%); control, -2.0 ± 2.9 (95% CI: -3.01, -0.99; 29%) AKPS: MT, 18.0 ± 11.4 (95% CI: 13.96, 22.04; 26%) control, 9.0 ± 15.0 (95% CI: 3.77, 14.23; 13%) Between groups Pain: 2.0 (95% CI: 1.0, 3.5; P<.05) AKPS: -10 (95% CI: -14, -5; P<.05)
Taylor and Brant- ingham ⁷²	RCT	n = 12 (6 in each group; female, 33%; age, 30.17 y); symptom du- ration, minimum 1 mo; dropout rate, 20%	MT: multidirectional patellar mobilization and HVLA patellar adjustment; 2 times per week for 4 wk MT and exercise: multidirectional patellar mobilization and HVLA patellar adjustment, quadriceps strengthening (WB and NWB), plus hamstring and quadriceps stretching; 2 times per week for 4 wk	5 wk	Pain (NPRS-101) PSFS (0-10)	Within groups Pain: MT, -35.0 ± 26.74 (95% CI: -63.06, -6.94; 52%; <i>P</i> = .043); MT and exercise, -49.17 ± 26.72 (95% CI: -77.21, -21.13; 79%; <i>P</i> = .028) PSFS: MT, 2.5 ± 2.69 (95% CI: -0.32, 5.32; 31%); MT and exercise, 3.0 ± 1.34 (95% CI: 1.59, 4.4; 46%) Between groups Pain: 14.47 (95% CI: -16.08, 44.42) PSFS: -0.5 (95% CI: -2.90, 1.90)
Stakes et al ⁶⁶	RCT	Knee MT: n = 30 (female, NR; age, 29 y); symp- tom duration, NR; dropout rate, 13% Multijoint MT: n = 30 (female, NR; age, 32 y); symptom duration, NR; dropout rate, 13%	Knee MT: patellar mobilization and lower extremity strengthening and stretching; 6 visits over 4 wk Multijoint MT: patellar mobilization and lower extremity strengthening and stretching, plus spinal and sacroiliac manipulation; 6 visits over 4 wk	6 wk	Pain (NPRS-101) PSFS (0-10)	Within groups Pain: MT at patella, -28.54 ± 35.49 (95% CI: -41.79, -15.29; 41%; P<.001); MT at patella and sacroiliac joint, -30.93 ± 29.57 (95% CI: -41.97, -19.89; 42%; P<.001) PSFS: MT at patella, 2.28 ± 2.94 (95% CI: 1.18, 3.38; 55%; P<.001); MT at patella and sacroiliac joint, 2.77 ± 2.41 (95% CI: 1.87, 3.67; 63%; P<.001) Between groups Pain: 2.39 (95% CI: -14.14, 18.92) PSFS: -0.49 (95% CI: -1.85, 0.87)
Rowlands and Brantingham ⁵⁸	RCT	Knee MT: n = 15 (female, NR; age, NR); symp- tom duration, NR; dropout rate, 0% Control group: n = 15 (female, NR; age, NR); symptom duration, NR; dropout rate, 0%	Knee MT: 10 min of PF mobilization and HVLA thrust, 3 times, to the patella; 8 visits over 4 wk Control group: sham ultra- sound for 5 min; 8 visits over 4 wk	4 wk	Pain (NPRS-101) PSFS (0-10)	 Within groups Pain: MT, -14.83 ± 15.96 (95% Cl: -22.91, -6.75); control, -24.67 ± 21.89 (95% Cl: -35.75, -13.59) PSFS: MT, 8.65 ± 1.56 (95% Cl: 778, 9.51); control, 6.7 ± 2.92 (95% Cl: 5.08, 8.31) No raw mean pre/post data available to calculate percent of mean change Between groups Pain: -9.84 (95% Cl: -23.54, 3.87; P = .211) PSFS: 1.95 (95% Cl: 0.27, 3.63; P = .06)

TABLE 1

SUMMARY OF THE STUDIES INCLUDED IN THE QUALITATIVE AND QUANTITATIVE SYNTHESES* (CONTINUED)

Study	Study Design	Participants [†]	Intervention	Follow-up Period	Outcome Measure	Change [‡]
Motealleh et al ⁴⁹	RCT	Lumbopelvic manipulation: n = 14 (female, 57%; age, 26.9 ± 5.5 y); symptom duration, <6 mo; dropout rate, 0% Sham manipulation: n = 14 (female, 57%; age, 26.1 ± 3.9 y); symptom duration, <6 mo; dropout rate, 0%	Lumbopelvic manipulation: HVLA thrust manipulation technique to lumbopelvic area; 1 session Sham manipulation: nonthrust mobilization technique to lumbopelvic area; 1 session	Immediately post MT	Pain (11-point NPRS) Step-down test (repetitions in 30 s) 1-legged hop test (maximum distance, in centimeters, of 3 trials)	Within groups Pain: MT, -2.2 ± 2.05 (95% CI: -3.38, -1.02; 40%); sham, 0.6 ± 1.98 (95% CI: -0.54, 1.74; -13%) Step-down test: MT, 2.9 ± 4.68 (95% CI: 0.20, 5.60; 21%); sham, 0.3 ± 4.04 (95% CI: -2.03, 2.63; 2%) I-legged hop test: MT, 4.0 ± 62.23 (95% CI: -31.93, 39.93; 3%); sham, -2.4 ± 63.00 (95% CI: -38.78, 33.98; -2%) Between groups Pain: -2.6 ± 1.8 (95% CI: -3.5, -1.8; P<0.01) Step-down test: 2.4 ± 3.5 (95% CI: 0.8, 3.9; P = 0.004) I-legged hop test: 6.80 ± 16.8 (95% CI: -2.0, 15.6; P = .125)
Behrangrad and Kamali ⁶	RCT	Lumbopelvic manipulation: $n=15$ (female, 80%; age, 24.3 ± 1.9 y); symptom duration, at least 6 wk; dropout rate, 0% Knee MT: $n=15$ (female, 80%; age, 24.3 ± 1.9 y); symptom duration, at least 6 wk; dropout rate, 0%	Lumbopelvic manipulation: HVLA thrust manipulation technique to lumbopelvic area; 3 visits over 1 wk Knee MT: ischemic compression to trigger points in the VMO (3 repetitions for 90 s each); 3 visits over 1 wk	1 wk, 1 mo, 3 mo	Pain (100-mm VAS) AKPS (0-100)	Within groups Pain at 1 wk: manipulation, −40.0 ± 8.6 (95% Cl: −44.4, −35.6; 61%); knee MT, −53.1 ± 10.1 (95% Cl: −58.2, −48.0; 82%) AKPS at 1 wk: manipulation, 15.6 ± 5.3 (95% Cl: 12.8, 18.3; 25%); knee MT, 28.3 ± 4.2 (95% Cl: 26.2, 30.4; 45%) Pain at 1 mo: manipulation, −39.0 ± 13.6 (95% Cl: −45.9, −32.1; 59%); knee MT, −53.5 ± 10.5 (95% Cl: −58.8, −48.2; 83%) AKPS at 1 mo: manipulation, 14.8 ± 5.7 (95% Cl: 11.9, 17.7; 23%); knee MT, 29.4 ± 4.2 (95% Cl: 27.3, 31.5; 47%) Pain at 3 mo: manipulation, −35.0 ± 8.7 (95% Cl: −39.4, −30.6; 53%); knee MT, −51.5 ± 5.2 (95% Cl: −54.1, −48.9; 79%) AKPS at 3 mo: manipulation, −25.0 ± 8.7 (95% Cl: 9.8, 15.7; 20%); knee MT, 29.8 ± 4.6 (95% Cl: 27.5, 32.1; 48%) Between groups Pain at 1 wk: 13.10 (95% Cl: 6.38, 19.82; P<.001) AKPS at 1 wk: −12.70 (95% Cl: −16.14, −9.26; P<.001) Pain at 3 mo: 14.50 (95% Cl: 5.79, 23.21; P<.001) AKPS at 1 mo: −14.60 (95% Cl: −18.20, −11.00; P<.001) Pain at 3 mo: −17.00 (95% Cl: −13.7, 21.63; P<.001)

Abbreviations: AKPS, Anterior Knee Pain Scale; CI, confidence interval; HVLA, high velocity, low amplitude; MT, manual therapy; NPRS, numeric painrating scale; NR, not reported; NWB, non-weight bearing; PF, patellofemoral; PSFS, Patient-Specific Functional Scale; RCT, randomized controlled trial; VAS, visual analog scale; VMO, vastus medialis oblique; WB, weight bearing.

stWhen not provided in the published articles, values were calculated through Open Meta-Analyst (http://www.cebm.brown.edu/openmeta/).

 $^{^{\}dagger}Values$ for age are mean or mean \pm SD.

 $^{^{\}pm}$ Values are mean \pm SD unless otherwise indicated. Percentage values in parentheses are mean change, representing change from baseline score to follow-up for within-group data. A negative value indicates a decrease in mean difference score.

 $[\]S Data\ not\ included\ in\ current\ meta-analysis.$

TABLE 2

CLINICAL MEANINGFULNESS OF CHANGES IN PAIN AND FUNCTION*

Study	Group	Within-Group Change in Pain (Time) Post Treatment	Clinically Meaningful? [†]	Within-Group Change in Function (Time) Post Treatment	Clinically Meaningful?‡
van den Dolder and Roberts ⁷³	Manual therapy	100-mm VAS: -10 ± 16 (2 wk)	No	Stair-climb test: 5 ± 3 (2 wk)	5.5 reported for patients with knee OA
	Control	100-mm VAS: -2 ± 10 (2 wk)	No	Stair-climb test: -1 ± 5 (2 wk)	Unknown
Hains and Hains ²⁹	Manual therapy (local to knee)	10-cm VAS: -3.57 ± 0.49 (4 wk)	Yes	NR	NR
	Manual therapy (remote to hip)	10-cm VAS: -1.90 ± 0.81 (4 wk)	Yes	NR	NR
Collins et al ¹³	Manual therapy	100-mm VAS: -29.2 ± 26.64 (6 wk)	Yes	AKPS (0-100): 11.7 ± 14.50 (6 wk)	No
	Sham orthotics	100-mm VAS: -8.6 ± 26.40 (6 wk)	No	AKPS (0-100): 2.7 ± 13.01 (6 wk)	No
	Foot orthotics	100-mm VAS: −19.6 ± 26.55 (6 wk)	Yes	AKPS (0-100): 8.9 ± 12.79 (6 wk)	No
	Foot orthotics and manual therapy	100-mm VAS: -36.3 ± 27.72 (6 wk)	Yes	AKPS (0-100): 12.1 ± 13.37 (6 wk)	No
Crossley et al ¹⁴	Manual therapy	10 -cm VAS: -4.0 ± 2.5 (6 wk)	Yes	AKPS (0-100): 18.0 ± 11.4 (6 wk)	Yes
	Control	10-cm VAS: -2.0 ± 2.9 (6 wk)	Yes	AKPS (0-100): 9.0 ± 15.0 (6 wk)	No
Taylor and Brantingham ⁷²	Manual therapy	NPRS-101 (0-100): -35.0 ± 26.74 (5 wk)	Yes	PSFS (0-10): 2.5 ± 2.69 (5 wk)	Yes
	Manual therapy and exercise	NPRS-101 (0-100): -49.17 ± 26.72 (5 wk)	Yes	PSFS (0-10): 3.0 ± 1.34 (5 wk)	Yes
Stakes et al ⁶⁶	Knee manual therapy	NPRS-101 (0-100): -28.54 ± 35.49 (6 wk)	Yes	PSFS (0-10): 2.28 ± 2.94 (6 wk)	Yes
	Multijoint manual therapy (including lumbopelvic manipulation)	NPRS-101 (0-100): -30.93 ± 29.57 (6 wk)	Yes	PSFS (0-10): 2.77 ± 2.41 (6 wk)	Yes
Rowlands and Brantingham ⁵⁸	Manual therapy	NPRS-101 (0-100): -14.83 ± 15.96 (4 wk)	No	PSFS (0-10): 8.65 ± 1.56 (4 wk)	Yes
	Control	NPRS-101 (0-100): -24.67 ± 21.89 (4 wk)	Yes	PSFS (0-10): 6.7 ± 2.92 (4 wk)	Yes
Motealleh et al ⁴⁹	Lumbopelvic manipulation	NPRS-101 (0-100): -2.2 ± 2.05 (immediately post manual therapy)	Yes	Step-down test: 2.9 ± 4.68 (immediately post manual therapy)	NA
	Sham manipulation	NPRS-101 (0-100): 0.6 ± 1.98 (immediately post manual therapy)	No	Step-down test: 0.3 ± 4.04 (immediately post manual therapy)	NA
Behrangrad and Kamali ⁶	Lumbopelvic manipulation	100-mm VAS: -39.0 ± 13.6 (4 wk)	Yes	AKPS (0-100): 14.8 ± 5.7 (4 wk)	Yes
	Knee manual therapy	100-mm VAS: -53.5 ± 10.5 (4 wk)	Yes	AKPS (0-100): 29.4 ± 4.2 (4 wk)	Yes

Abbreviations: AKPS, Anterior Knee Pain Scale; MCID, minimal clinically important difference; MDC, minimal detectable change; NA, not assessed; NPRS, numeric pain-rating scale; NR, not reported; OA, osteoarthritis; PSFS, Patient-Specific Functional Scale; VAS, visual analog scale.

bias.^{6,13,14,29,72} The most common source of bias across studies was nonblinding of personnel/care providers (8 of the 9 studies). All studies included in the meta-analysis had low bias for selective reporting, and 8 of 9 had low selection bias.

Risk of Bias Across Studies

The MT intervention techniques and dosage of the interventions were not consistent across studies. Long-term follow-up was lacking in all studies, except for the study by Collins et al,¹³ which included data from a 1-year follow-up. True

blinding of both the participants and assessors was not feasible due to the nature of the interventions (TABLE 4). FIGURE 2 illustrates the risk of bias across all studies included in this synthesis, expressed as a percentage.

Meta-analysis

Three studies that compared the inclusion of MT directed at the patella with a control or sham group provided self-reported functional outcomes (**FIGURE** 3).^{13,14,58} Two studies utilized the AKPS, ^{13,14} and 1 study the PSFS.⁵⁸ The SMD for the

pooled effect size for these studies was 0.68 (95% confidence interval [CI]: 0.38, 0.98; P<.001), which is indicative of a favorable improvement at 4 to 6 weeks' follow-up. Collins et al,¹³ the only study with a long-term follow-up, found no significant difference in improvement between groups at 1 year. The heterogeneity (I²) of the studies in **FIGURE 3** was 0% (P = .929), indicating that variations in study designs or samples had little impact on the outcomes. The MCID of the AKPS was surpassed at 6 weeks in the study by Crossley et al,¹⁴ but not in the

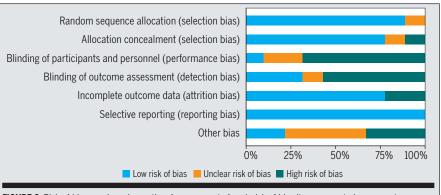
^{*}Values are mean \pm SD unless otherwise indicated.

[†]Clinically meaningful difference values: NPRS MCID, 2 points⁵⁹; VAS MCID, 1.4 cm.⁷⁰

^{*}Clinically meaningful difference values: AKPS MDC, 13 points⁷⁷; PSFS MDC, 1.5 points.¹¹

oblique.

TABLE 3


SUMMARY OF ADDITIONAL KEY FINDINGS FROM OUTCOMES Not Included in the Meta-analysis

Study	Group	Outcome	Key Findings
van den Dolder and Roberts ⁷³	Manual therapy	Patellofemoral Pain Severity Questionnaire	No difference in Patellofemoral Pain Severity Questionnaire average and stairs scores between groups
		Active knee ROM	Increased knee flexion ROM by 10° (95% Cl: 4°, 16°; P = .004) in manual therapy group
	Control	Step test (number in 60 s)	Increased number of steps in 60 s by 5 (95% Cl: 2, 8; $P = .001$) in manual therapy group
Hains and Hains ²⁹	Manual therapy (local to knee) Manual therapy (remote to hip)	Patella-grind test	The knee manual therapy group had a significant decrease in patella-grind test score from pre to post treatment. There was no significant change for the hip manual therapy group. No between-group comparison was reported
Collins et al ¹³	Manual therapy Sham orthotics Foot orthotics	Functional Index Questionnaire Global improvement	At 6 and 12 wk, no significant differences were found in global improvement or Functional Index Questionnaire scores between groups A significant effect favored foot orthotics over sham orthotics at 6 and 12 wk for the outcomes noted
Crossley et al ¹⁴	Manual therapy	Functional Index Questionnaire	There was no significant difference in Functional Index Questionnaire score between treatment groups
	Control	Functional measurement of number of step-ups, step-downs, and squats that participants could perform before pain onset or increase	The manual therapy group was able to perform significantly more step-ups (P = .01), step-downs (P = .03), and squats (P = .04) before pain onset or increase
Taylor and Brantingham ⁷²	Manual therapy	Short-form McGill Pain Questionnaire	Significant improvements in short-form McGill Pain Questionnaire scores in both groups from baseline to post treatment were found
	Manual therapy and exercise	Pressure pain threshold	Significant improvements in threshold in both groups from baseline to post treatment were found
		Pressure pain tolerance	Significant improvements in tolerance in both groups from baseline to post treatment were found
Stakes et al ⁶⁶	Knee manual therapy	Short-form McGill Pain Questionnaire	Significant improvements in short-form McGill Pain Questionnaire scores in both groups from baseline to post treatment were found
		Patellofemoral Joint Evaluation Scale	Significant improvements in Patellofemoral Joint Evaluation Scale scores in both groups from baseline to post treatment were found
	Multijoint manual therapy	Pressure pain threshold	Significant improvements in threshold in both groups from baseline to post treatment were found
		Pressure pain tolerance	Significant improvements in tolerance in both groups from baseline to post treatment were found
Rowlands and Brantingham ⁵⁸	Manual therapy	Short-form McGill Pain Questionnaire	No significant difference in short-form McGill Pain Questionnaire scores between groups was found
	Control	Pressure pain threshold	There was a significant improvement in threshold for the manual therapy group from baseline to post treatment
		Pressure pain tolerance	There was a significant improvement in tolerance for the manual therapy group from baseline to post treatment
Motealleh et al ⁴⁹	Lumbopelvic manipula- tion	EMG of VMO, VL, and GM	Onset of EMG activity of the VMO and GM was earlier and higher in the manipulation group compared to the sham group. No significant difference between groups was found for EMG onset of the VL
	Sham manipulation	1-leg hop test for distance	A significant improvement in hop test distance following lumbopelvic manipulation was found
		Step-down test (number of repetitions in 30 s)	No significant change in step-down test performance between groups was found
Behrangrad and Kamali ⁶	Lumbopelvic manipula- tion Knee manual therapy	Pressure pain threshold	Significant improvements in threshold for both groups from baseline to 1 wk, 1 mo, and 3 mo post treatment were found. Improvement in pressure pain threshold was greater in the knee manual therapy group than in the lumbopelvic manipulation group

TABLE 4	COCHRA	chrane Risk-of-Bias Quality Assessment of the Included Trials*							
				Item†					
Study	1	2	3	4	5	6	7	Overall Risk of Bias	
Collins et al ¹³	2	2	0	2	2	2	1	Low	
Crossley et al ¹⁴	2	2	0	2	2	2	1	Low	
Hains and Hains ²⁹	2	2	1	1	2	2	2	Low	
Stakes et al ⁶⁶	2	2	0	0	0	2	0	High	
Rowlands and Brantingham ⁵⁸	1	0	0	0	0	2	0	High	
Taylor and Brantingham ⁷²	2	2	2	2	2	2	1	Low	
van den Dolder and Roberts ⁷³	2	2	0	0	2	2	1	Moderate	
Motealleh et al ⁴⁹	2	1	0	0	2	2	0	Moderate	
Behrangrad and Kamali ⁶	2	2	1	0	2	2	2	Low	

*Adapted from the Cochrane risk-of-bias³³ quality assessment tool. A score of 0 indicates high bias, a score of 1 unclear bias, and a score of 2 low bias.

'Items: 1, Random sequence generation (selection bias); 2, Allocation concealment (selection bias); 3, Blinding of participants and personnel (performance bias); 4, Blinding of outcome assessment (detection bias); 5, Incomplete outcome data (attrition bias); 6, Selective reporting (reporting bias); 7, Additional bias.

FIGURE 2. Risk-of-bias graph: review authors' assessment of each risk-of-bias item, presented as percentages, across all included studies.

study by Collins et al.¹³ Interpretation of the MCID was not possible for the study by Rowlands and Brantingham,⁵⁸ due to incomplete reporting of data.

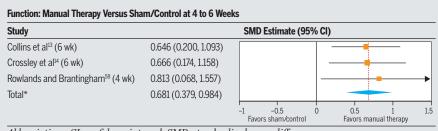
Five studies investigated the change in pain, reported via VAS or NPRS, in participants who received MT directed at the patella compared to a sham intervention or control at 2 to 6 weeks. ^{13,14,29,58,73} A summary of the pooled effect of the SMD for change in pain is presented in **FIGURE 4**. ^{13,14,29,58,73} A continuous random-effects model was used to determine the SMD for the measure of association. The SMD for the pooled effect size was -0.61 (95% CI: -0.87,

-0.36; P<.001) and was significant in support of MT intervention to the patella. The heterogeneity of the studies in **FIGURE 4** was 0% (P=.766). Three of the 5 studies reported a change in pain in the MT group that surpassed the MCID for the NPRS or VAS.^{13,14,29}

Two of the studies included in the meta-analysis compared a combination of exercise and MT techniques directed at the patella to alternative interventions, reporting pain as an outcome measure (**FIGURE 5**).^{66,72} The SMD for the pooled effect size was -0.03 (95% CI: -0.52, 0.46; P = .902), and the heterogeneity was 0% (P = .387). Stakes et al⁶⁶ compared the

bundled approach of exercise and MT at the patella to exercise, MT at the patella, and lumbopelvic manipulation, whereas Taylor and Brantingham⁷² compared the bundled approach to just MT at the patella. In both studies, changes in pain for both groups surpassed the MCID for the NPRS or VAS.^{66,72}

Three studies looked at the effects of lumbopelvic manipulation on PFP. 6,49,66 Stakes et al66 included sacroiliac manipulation in addition to a comprehensive program, while Motealleh et al49 compared lumbopelvic manipulation with a sham technique to the lumbopelvic joint. Behrangrad and Kamali⁶ compared lumbopelvic manipulation (alone) to an alternative treatment (ischemic compression at the vastus medialis oblique). Due to the differences in study design and experimental groups, a meta-analysis was not performed. Stakes et al⁶⁶ reported changes in pain for both groups that met or surpassed the MCID for the NPRS, with no significant between-group differences. Motealleh et al49 reported a significant improvement in pain, which exceeded the MCID, for the group receiving the true lumbopelvic manipulation, but no differences between groups were noted for a functional step-down test. Behrangrad and Kamali⁶ found a significant change in pain and functional score at 1 week, 1 month, and 3 months post intervention in favor of the ischemic compression group.


DISCUSSION

atic review, there is moderate evidence of short-term (6 weeks or less) pain relief following MT directed to the patellar region in individuals with PFP, when compared to a sham or control intervention. In addition, there may be a short-term, added benefit of pain reduction when MT is included in a more comprehensive treatment approach for patients with PFP. While the meta-analysis indicates that inclusion of MT provided benefits in self-reported function,

these benefits were not clinically meaningful. While changes in pain scores following MT directed to the patellar region met or exceeded the MDC and MCID in most studies, this was not the case for self-reported function. Manual therapy directed to the patellar region for individuals with PFP may be better than no intervention, but may not be better than alternative therapies. In studies that compared MT combined with exercise to an alternative treatment, the overall pooled effect showed no significant difference; however, the alternative treatments differed across the 2 studies. 66,72 When MT with exercise was compared to MT at the patella alone⁷² or to a sham intervention,14 there was a significant or clinically meaningful reduction in pain between groups. There was no additional benefit to the addition of MT directed at the lumbopelvic complex for individuals with PFP, based on 3 studies.

The etiology of PFP is generally not well agreed upon, other than it appears to be multifactorial. Consequently, the interventions utilized to address this condition are often variable, with MT interventions described in a number of studies. 6,13,14,29,49,58,66,72,73 While MT was often not the exclusive treatment approach, the limited number of studies showing the benefit of MT directed to the patellar region and other studies showing benefits of other treatment approaches may lend support to the multifactorial etiology of PFP. There may be a specific subgroup of individuals with PFP who show greater benefit in the short term from the inclusion of MT directed to the patellar region, but this has not been defined to date.

Three studies that included spinal manual interventions in this review met criteria for our narrative review. 6,49,66 The treatment provided to the comparison group varied across all studies. Outcomes of these studies were mixed. Motealleh et al 49 found improved pain and function in individuals with PFP who received lumbopelvic manipulation compared with a sham manipulation; however, Stakes et al 66 reported no difference between MT

Abbreviations: CI, confidence interval; SMD, standardized mean difference. *Overall: P = 0%, P = .929.

FIGURE 3. Pooled effect of the standardized mean difference for self-reported function: manual therapy directed at the patella compared to sham or control at 4 to 6 weeks post intervention.

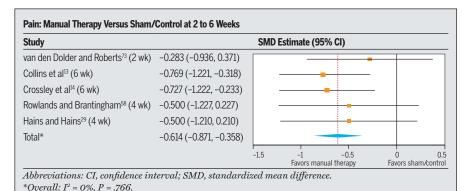
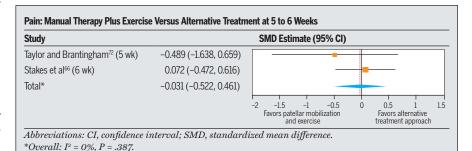



FIGURE 4. Pooled effect of the standardized mean difference for change in pain: manual therapy directed at the

patella compared to sham or control at 2 to 6 weeks post intervention.

FIGURE 5. Pooled effect of the standardized mean difference for change in pain: manual therapy directed at the patella combined with exercise compared to an alternative treatment approach at 5 to 6 weeks post intervention.

at the knee compared to MT at the knee with lumbopelvic manipulation. When ischemic compression at the vastus medialis oblique was compared to lumbopelvic manipulation, pain and functional outcomes demonstrated greater improvement in the ischemic compression group.⁶

Short-term improvement in quadriceps strength³⁴ and decreased quadriceps inhibition^{68,69} have been described following lumbopelvic manipulation in

this population. It has been theorized that neurophysiologic changes or regional interdependence may be responsible for observed changes seen following manipulation.³⁷ Iverson et al³⁷ developed a clinical prediction rule for the utilization of lumbar spine and sacroiliac joint manipulative therapy in patients with PFP, which has not yet been validated. Grindstaff and colleagues²⁸ assessed the quadriceps strength of patients with PFP

following a lumbopelvic joint manipulation, but found no significant benefit of treatment. Crowell and Wofford17 performed a nonrandomized study that assessed hip range of motion, hip strength, hop test performance, pain, and global rating of change before and immediately after the application of lumbopelvic manipulation in patients with PFP. They found no clinically meaningful change in hip strength and functional testing variables, with a mean reduction in hip abduction and hip extension strength following the MT intervention at the lumbopelvic joint.¹⁷ While these studies did not meet the inclusion criteria of this review, future investigations may determine whether any added benefit from remote MT interventions would best serve this patient population.

It has been recommended that patellofemoral joint mobilization only be considered in the presence of joint mobility restriction.⁵ Application of MT local to this joint has been thought to improve the flexibility of the passive peripatellar structures, which may be contributing to weakness of quadriceps musculature. 14,58 Patellofemoral mobilization and soft tissue techniques to the knee may reduce muscle and fascial tightness of the lateral structures believed to lead to lateral patellar tracking, which seemingly contributes to knee pain. 18 A possible neuroanatomical basis for PFP has been theorized due to a greater distribution of nerve fibers and neural growth factor in the lateral patellofemoral region of patients with PFP.60 It is possible that MT directed to the patellar region could have neurophysiological benefits.

Optimal management of PFP remains unclear, with patients often developing recurrent or chronic pain complaints.¹⁹ Clinicians may consider MT within the context of a multimodal approach in the management of PFP. A multimodal approach may consist of proximal hip and quadriceps strengthening, movement-pattern retraining, training load management, patient education, distal and core strengthening, MT, stretching based

on assessment findings, taping and/or bracing, and foot orthoses.⁵ Exercise specifically targeting the proximal hip musculature and quadriceps should be included in the treatment of patients with PFP, based on the conclusions of several systematic reviews.^{5,43,74} Only 4 of the 9 studies in the meta-analysis incorporated quadriceps and hip strengthening into their protocols.^{13,14,66,72} The addition of MT may be of additional benefit to a comprehensive rehabilitation program for short-term pain reduction.

Limitations

Among the 9 studies identified in this review, there was great variety of interventions, comparison groups, outcome measures, and follow-up time frames. Several limitations were found in the process of this systematic review, primarily with regard to the small number of studies and studies with small samples. The included studies reported a variety of assessment times, many with a short-term follow-up period, making the long-term implications of the study intervention unclear. The study by Taylor and Brantingham⁷² was a pilot RCT that did not allow for complete statistical evaluation of the effect or effectiveness of the intervention, but was included because it met the inclusion criteria for this review. Findings should be interpreted with caution, as this study may show a more extreme treatment effect compared to the larger studies.

A variety of outcome measurements, ranging from self-report functional measures to functional testing, were used, with little consistency among studies. Although 1 study⁷² had a very small sample size compared to the other studies, it met inclusion criteria for the current review. Data from the Patellofemoral Pain Severity Scale, Functional Index Questionnaire, global improvement, and short-form McGill Pain Questionnaire were not reported in the review due to the limited number of studies that included these measures.

A common issue of bias among all studies was the lack of true blinding of the participants and assessors; however, in some cases, the lack of true blinding did not likely contribute to bias, as participants were likely not aware of which intervention was hypothesized to be more effective. In addition, the high risk of bias in the studies by Stakes et al⁶⁶ and Rowlands and Brantingham⁵⁸ suggests that interpretation of the pooled effects should be made with caution. Additionally, had we chosen to utilize a different risk-of-bias tool, we might have arrived at conflicting results due to inherent differences in the convergent validity among tools.

The MT techniques described in the studies in this review were quite varied in terms of the type of intervention and length of time for the application of the intervention. Also, some of the studies included supplementary interventions in addition to the MT techniques, which makes the exact mechanism for the results uncertain. In a clinical setting, management of PFP would rarely consist solely of MT interventions. The inclusion of selected strengthening exercises of the quadriceps, hip, and trunk musculature could have potentially accounted for some of the improvement in pain rating. 13,14,66,72

Implications for Future Studies

Further research and improved consistency on the use of the most appropriate outcome measures for individuals with PFP are warranted. The inclusion of multiple follow-up times to assess the long-term effectiveness of management of PFP is necessary. Further research may consider identifying the characteristics of a potential subgroup of individuals who would most benefit from MT techniques. Additional research is needed on the ideal management of PFP, including whether MT techniques are warranted.

CONCLUSION

HERE IS MODERATE EVIDENCE TO support the utilization of MT interventions directed to the local knee structures as part of a comprehensive,

multimodal rehabilitation program to provide short-term, clinically meaningful benefits in pain in patients with PFP. Although the present meta-analysis showed that self-reported function may also improve with the inclusion of MT, whether such changes in self-reported function are clinically meaningful is unclear. No recommendations can be made at this time on the most effective type of MT in terms of dosage or techniques.

KEY POINTS

FINDINGS: Manual therapy interventions directed to the local knee structures may help to decrease pain in patients

directed to the local knee structures may help to decrease pain in patients with patellofemoral pain. The effect on functional outcomes is less clear and not likely to be clinically significant.

IMPLICATIONS: Manual therapy techniques may be a beneficial part of a comprehensive multimodal approach for patients with patellofemoral pain.

CAUTION: Study bias, methodological limitations, and the lack of outcome data beyond 6 weeks should be considered in the interpretation of the results. Optimal dosage and specific techniques are not well defined, with high variability across studies.

REFERENCES

- Abbott JH, Schmitt J. Minimum important differences for the Patient-Specific Functional Scale, 4 region-specific outcome measures, and the numeric pain rating scale. J Orthop Sports Phys Ther. 2014;44:560-564. https://doi. org/10.2519/jospt.2014.5248
- 2. Alba-Martín P, Gallego-Izquierdo T, Plaza-Manzano G, Romero-Franco N, Núñez-Nagy S, Pecos-Martín D. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: a systematic review. *J Phys Ther Sci.* 2015;27:2387-2390. https://doi.org/10.1589/jpts.27.2387
- **3.** Aminaka N, Gribble PA. A systematic review of the effects of therapeutic taping on patellofemoral pain syndrome. *J Athl Train*. 2005;40:341-351.
- Avraham F, Aviv S, Ya'akobi P, et al. The efficacy
 of treatment of different intervention programs
 for patellofemoral pain syndrome–a single
 blinded randomized clinical trial. Pilot study.
 ScientificWorldJournal. 2007;7:1256-1262.

- https://doi.org/10.1100/tsw.2007.167
- 5. Barton CJ, Lack S, Hemmings S, Tufail S, Morrissey D. The 'Best Practice Guide to Conservative Management of Patellofemoral Pain': incorporating level 1 evidence with expert clinical reasoning. Br J Sports Med. 2015;49:923-934. https://doi.org/10.1136/ bjsports-2014-093637
- 6. Behrangrad S, Kamali F. Comparison of ischemic compression and lumbopelvic manipulation as trigger point therapy for patellofemoral pain syndrome in young adults: a double-blind randomized clinical trial. J Bodyw Mov Ther. 2017;21:554-564. https://doi.org/10.1016/j. ibmt.2016.08.007
- Bloomer BA, Durall CJ. Does the addition of hip strengthening to a knee-focused exercise program improve outcomes in patients with patellofemoral pain syndrome? J Sport Rehabil. 2015;24:428-433. https://doi.org/10.1123/ jsr.2014-0184
- Brantingham JW, Globe GA, Jensen ML, et al. A feasibility study comparing two chiropractic protocols in the treatment of patellofemoral pain syndrome. J Manipulative Physiol Ther. 2009;32:536-548. https://doi.org/10.1016/j. jmpt.2009.08.005
- Callaghan MJ, Selfe J. Patellar taping for patellofemoral pain syndrome in adults. Cochrane Database Syst Rev. 2012:CD006717. https://doi.org/10.1002/14651858.CD006717. pub2
- Chang WD, Chen FC, Lee CL, Lin HY, Lai PT. Effects of Kinesio taping versus McConnell taping for patellofemoral pain syndrome: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2015;2015:471208. https://doi.org/10.1155/2015/471208
- 11. Chatman AB, Hyams SP, Neel JM, et al. The Patient-Specific Functional Scale: measurement properties in patients with knee dysfunction. *Phys Ther*. 1997;77:820-829. https://doi. org/10.1093/ptj/77.8.820
- Clark DI, Downing N, Mitchell J, Coulson L, Syzpryt EP, Doherty M. Physiotherapy for anterior knee pain: a randomised controlled trial. *Ann Rheum Dis*. 2000;59:700-704. https://doi. org/10.1136/ard.59.9.700
- 13. Collins N, Crossley K, Beller E, Darnell R, McPoil T, Vicenzino B. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. Br J Sports Med. 2009;43:169-171. https://doi.org/10.1136/bmj.a1735
- Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain: a randomized, double-blinded, placebocontrolled trial. Am J Sports Med. 2002;30:857-865. https://doi.org/10.1177/0363546502030006 1701
- Crossley KM, Cowan SM, McConnell J, Bennell KL. Physical therapy improves knee flexion during stair ambulation in patellofemoral pain. Med Sci Sports Exerc. 2005;37:176-183.

- 16. Crossley KM, Vicenzino B, Lentzos J, et al. Exercise, education, manual-therapy and taping compared to education for patellofemoral osteoarthritis: a blinded, randomised clinical trial. Osteoarthritis Cartilage. 2015;23:1457-1464. https://doi.org/10.1016/i.joca.2015.04.024
- 17. Crowell MS, Wofford NH. Lumbopelvic manipulation in patients with patellofemoral pain syndrome. *J Man Manip Ther*. 2012;20:113-120. https://doi.org/10.1179/204261861 2Y.0000000002
- Cyriax J. Textbook of Orthopaedic Medicine: Diagnosis of Soft Tissue Lesions. Baltimore, MD: Williams & Wilkins; 1970.
- Davis IS, Powers CM. Patellofemoral pain syndrome: proximal, distal, and local factors—an international retreat, April 30-May 2, 2009, Fells Point, Baltimore, MD. J Orthop Sports Phys Ther. 2010;40:A1-A48. https://doi.org/10.2519/ jospt.2010.0302
- **20.** DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. *Am J Sports Med*. 1986;14:218-224. https://doi.org/10.1177/036354658601400307
- **21.** Devereaux MD, Lachmann SM. Patello-femoral arthralgia in athletes attending a Sports Injury Clinic. *Br J Sports Med*. 1984;18:18-21. https://doi.org/10.1136/bjsm.18.1.18
- 22. Dolak KL, Silkman C, Medina McKeon J, Hosey RG, Lattermann C, Uhl TL. Hip strengthening prior to functional exercises reduces pain sooner than quadriceps strengthening in females with patellofemoral pain syndrome: a randomized clinical trial. J Orthop Sports Phys Ther. 2011;41:560-570. https://doi.org/10.2519/jospt.2011.3499
- **23.** Earl JE, Hoch AZ. A proximal strengthening program improves pain, function, and biomechanics in women with patellofemoral pain syndrome. *Am J Sports Med*. 2011;39:154-163. https://doi.org/10.1177/0363546510379967
- 24. Ferber R, Bolgla L, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: a multicenter randomized controlled trial. J Athl Train. 2015;50:366-377. https://doi.org/10.4085/1062-6050-49.3.70
- 25. Ferber R, Kendall KD, Farr L. Changes in knee biomechanics after a hip-abductor strengthening protocol for runners with patellofemoral pain syndrome. *J Athl Train*. 2011;46:142-149. https://doi.org/10.4085/1062-6050-46.2.142
- 26. Fukuda TY, Melo WP, Zaffalon BM, et al. Hip posterolateral musculature strengthening in sedentary women with patellofemoral pain syndrome: a randomized controlled clinical trial with 1-year follow-up. J Orthop Sports Phys Ther. 2012;42:823-830. https://doi.org/10.2519/jospt.2012.4184
- Grana WA, Kriegshauser LA. Scientific basis of extensor mechanism disorders. Clin Sports Med. 1985:4:247-257.
- **28.** Grindstaff TL, Hertel J, Beazell JR, et al. Lumbopelvic joint manipulation and quadriceps

- activation of people with patellofemoral pain syndrome. *J Athl Train*. 2012;47:24-31.
- 29. Hains G, Hains F. Patellofemoral pain syndrome managed by ischemic compression to the trigger points located in the peri-patellar and retro-patellar areas: a randomized clinical trial. Clin Chiropr. 2010;13:201-209. https://doi. org/10.1016/j.clch.2010.05.001
- Harrison E, Sheppard MS, McQuarrie A. A randomized controlled trial of physical therapy treatment programs in patellofemoral pain syndrome. *Physiother Can*. 1999;51:93-106.
- Heino Brechter J, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med Sci Sports Exerc. 2002;34:1582-1593.
- 32. Herr KA, Spratt K, Mobily PR, Richardson G. Pain intensity assessment in older adults: use of experimental pain to compare psychometric properties and usability of selected pain scales with younger adults. Clin J Pain. 2004;20:207-219.
- Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Oxford, UK: The Cochrane Collaboration; 2011.
- 34. Hillermann B, Gomes AN, Korporaal C, Jackson D. A pilot study comparing the effects of spinal manipulative therapy with those of extraspinal manipulative therapy on quadriceps muscle strength. J Manipulative Physiol Ther. 2006;29:145-149. https://doi.org/10.1016/j.jmpt.2005.12.003
- 35. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol Methods. 2006;11:193-206. https://doi.org/10.1037/1082-989X.11.2.193
- 36. Ismail MM, Gamaleldein MH, Hassa KA. Closed kinetic chain exercises with or without additional hip strengthening exercises in management of patellofemoral pain syndrome: a randomized controlled trial. Eur J Phys Rehabil Med. 2013;49:687-698.
- 37. Iverson CA, Sutlive TG, Crowell MS, et al. Lumbopelvic manipulation for the treatment of patients with patellofemoral pain syndrome: development of a clinical prediction rule. J Orthop Sports Phys Ther. 2008;38:297-309; discussion 309-312. https://doi.org/10.2519/ jospt.2008.2669
- Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: a comparison of six methods. *Pain*. 1986;27:117-126. https://doi. org/10.1016/0304-3959(86)90228-9
- Jensen MP, Turner JA, Romano JM. What is the maximum number of levels needed in pain intensity measurement? *Pain*. 1994;58:387-392. https://doi.org/10.1016/0304-3959(94)90133-3
- 40. Khayambashi K, Fallah A, Movahedi A, Bagwell J, Powers C. Posterolateral hip muscle strengthening versus quadriceps strengthening for patellofemoral pain: a comparative control trial. Arch Phys Med Rehabil. 2014;95:900-907. https://doi.org/10.1016/j.apmr.2013.12.022

- 41. Khayambashi K, Mohammadkhani Z, Ghaznavi K, Lyle MA, Powers CM. The effects of isolated hip abductor and external rotator muscle strengthening on pain, health status, and hip strength in females with patellofemoral pain: a randomized controlled trial. J Orthop Sports Phys Ther. 2012;42:22-29. https://doi.org/10.2519/jospt.2012.3704
- **42.** Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O. Scoring of patellofemoral disorders. *Arthroscopy*. 1993;9:159-163. https://doi.org/10.1016/ S0749-8063(05)80366-4
- **43.** Lack S, Barton C, Sohan O, Crossley K, Morrissey D. Proximal muscle rehabilitation is effective for patellofemoral pain: a systematic review with meta-analysis. *Br J Sports Med*. 2015;49:1365-1376. https://doi.org/10.1136/bjsports-2015-094723
- 44. Mascal CL, Landel R, Powers C. Management of patellofemoral pain targeting hip, pelvis, and trunk muscle function: 2 case reports. *J Orthop Sports Phys Ther*. 2003;33:647-660. https://doi. org/10.2519/jospt.2003.33.11.647
- 45. Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17:215-219. https://doi. org/10.1097/JSM.0b013e3180592a48
- 46. Milgrom C, Finestone A, Eldad A, Shlamkovitch N. Patellofemoral pain caused by overactivity. A prospective study of risk factors in infantry recruits. J Bone Joint Surg Am. 1991;73:1041-1043.
- 47. Miller J, Westrick R, Diebal A, Marks C, Gerber JP. Immediate effects of lumbopelvic manipulation and lateral gluteal Kinesio taping on unilateral patellofemoral pain syndrome: a pilot study. Sports Health. 2013;5:214-219. https://doi.org/10.1177/1941738112473561
- **48.** Mostafavifar M, Wertz J, Borchers J. A systematic review of the effectiveness of Kinesio taping for musculoskeletal injury. *Phys Sportsmed*. 2012;40:33-40. https://doi.org/10.3810/psm.2012.11.1986
- 49. Motealleh A, Gheysari E, Shokri E, Sobhani S. The immediate effect of lumbopelvic manipulation on EMG of vasti and gluteus medius in athletes with patellofemoral pain syndrome: a randomized controlled trial. *Man Ther*. 2016;22:16-21. https:// doi.org/10.1016/j.math.2016.02.002
- 50. Nakagawa TH, Muniz TB, de Marche Baldon R, Dias Maciel C, de Menezes Reiff RB, Serrão FV. The effect of additional strengthening of hip abductor and lateral rotator muscles in patellofemoral pain syndrome: a randomized controlled pilot study. Clin Rehabil. 2008;22:1051-1060. https://doi.org/10.1177/0269215508095357
- 51. National Heart, Lung, and Blood Institute. Quality assessment of controlled intervention studies. Available at: https://www.nhlbi.nih.gov/healthpro/guidelines/in-develop/cardiovascular-riskreduction/tools/rct. Accessed January 5, 2017.

- Noehren B, Shuping L, Jones A, Akers DA, Bush HM, Sluka KA. Somatosensory and biomechanical abnormalities in females with patellofemoral pain. *Clin J Pain*. 2016;32:915-919. https://doi.org/10.1097/AJP.00000000000000331
- **53.** Patle S, Bhave S. A study on the efficacy of manual therapy as an intervention to supervised exercise therapy in patients with anterior knee pain: a randomised controlled trial. *Indian J Physiother Occup Ther*. 2015;9:92-96. https://doi.org/10.5958/0973-5674.2015.00060.X
- 54. Powers CM. The influence of altered lowerextremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. *J Orthop Sports Phys Ther*. 2003;33:639-646. https://doi. org/10.2519/jospt.2003.33.11.639
- 55. Powers CM. Rehabilitation of patellofemoral joint disorders: a critical review. J Orthop Sports Phys Ther. 1998;28:345-354. https://doi.org/10.2519/ jospt.1998.28.5.345
- 56. Price DD, Bush FM, Long S, Harkins SW. A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. *Pain*. 1994;56:217-226. https://doi.org/10.1016/0304-3959(94)90097-3
- Roush MB, Sevier TL, Wilson JK, et al. Anterior knee pain: a clinical comparison of rehabilitation methods. Clin J Sport Med. 2000;10:22-28.
- Rowlands BW, Brantingham JW. The efficacy of patella mobilization in patients suffering from patellofemoral pain syndrome. J Neuromusculoskelet Syst. 1999;7:142-149.
- 59. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8:283-291. https://doi.org/10.1016/j. ejpain.2003.09.004
- **60.** Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. *Am J Sports Med*. 2000;28:725-731. https://doi.org/10.1177/03635465000280051801
- 61. Sanchis-Alfonso V, Roselló-Sastre E, Martinez-SanJuan V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. Am J Knee Surg. 1999:12:29-40.
- 62. Shwayhat AF, Linenger JM, Hofherr LK, Slymen DJ, Johnson CW. Profiles of exercise history and overuse injuries among United States Navy Sea, Air, and Land (SEAL) recruits. Am J Sports Med. 1994;22:835-840. https://doi.org/10.1177/036354659402200616
- 63. Smith TO, Drew BT, Meek TH, Clark AB. Knee orthoses for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015:CD010513. https://doi. org/10.1002/14651858.CD010513.pub2
- **64.** Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International

- Olympic Committee consensus statement on load in sport and risk of injury. *Br J Sports Med*. 2016;50:1030-1041. https://doi.org/10.1136/bjsports-2016-096581
- **65.** Sommer HM. Patellar chondropathy and apicitis, and muscle imbalances of the lower extremities in competitive sports. *Sports Med.* 1988;5:386-394. https://doi.org/10.2165/00007256-198805060-00004
- 66. Stakes NO, Myburgh C, Brantingham JW, Moyer RJ, Jensen M, Globe G. A prospective randomized clinical trial to determine efficacy of combined spinal manipulation and patella mobilization compared to patella mobilization alone in the conservative management of patellofemoral pain syndrome. J Am Chiropr Assoc. 2006;43:11-18.
- 67. Stasinopoulos D, Stasinopoulos I. Comparison of effects of exercise programme, pulsed ultrasound and transverse friction in the treatment of chronic patellar tendinopathy. *Clin Rehabil*. 2004;18:347-352. https://doi. org/10.1191/0269215504cr757oa
- 68. Suter E, McMorland G, Herzog W, Bray R. Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial. J Manipulative Physiol Ther. 2000;23:76-80. https://doi. org/10.1016/S0161-4754(00)90071-X
- **69.** Suter E, McMorland G, Herzog W, Bray R. Decrease in quadriceps inhibition after

- sacroiliac joint manipulation in patients with anterior knee pain. *J Manipulative Physiol Ther*. 1999;22:149-153. https://doi.org/10.1016/S0161-4754(99)70128-4
- 70. Tashjian RZ, Deloach J, Porucznik CA, Powell AP. Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. J Shoulder Elbow Surg. 2009;18:927-932. https:// doi.org/10.1016/j.jse.2009.03.021
- Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36:95-101. https://doi. org/10.1136/bjsm.36.2.95
- 72. Taylor K, Brantingham JW. An investigation into the effect of exercise combined with patella mobilization/manipulation in the treatment of patellofemoral pain syndrome: a randomized, assessor-blinded, controlled clinical pilot trial. Eur J Chiropr. 2003;51:5-17.
- 73. van den Dolder PA, Roberts DL. Six sessions of manual therapy increase knee flexion and improve activity in people with anterior knee pain: a randomised controlled trial. Aust J Physiother. 2006;52:261-264. https://doi. org/10.1016/S0004-9514(06)70005-8
- 74. Van Der Heijden RA, Lankhorst NE, Van Linschoten R, Bierma-Zeinstra SM, Van Middelkoop M. Exercise for treating

- patellofemoral pain syndrome: an abridged version of Cochrane systematic review. *Eur J Phys Rehabil Med*. 2016;52:110-133.
- 75. Wainner RS, Whitman JM, Cleland JA, Flynn TW. Regional interdependence: a musculoskeletal examination model whose time has come. J Orthop Sports Phys Ther. 2007;37:658-660. https://doi.org/10.2519/jospt.2007.0110
- 76. Wallace DA, Salem GJ, Salinas R, Powers CM. Patellofemoral joint kinetics while squatting with and without an external load. J Orthop Sports Phys Ther. 2002;32:141-148. https://doi. org/10.2519/jospt.2002.32.4.141
- 77. Watson CJ, Propps M, Ratner J, Zeigler DL, Horton P, Smith SS. Reliability and responsiveness of the Lower Extremity Functional Scale and the Anterior Knee Pain Scale in patients with anterior knee pain. *J Orthop Sports Phys Ther*. 2005;35:136-146. https://doi.org/10.2519/jospt.2005.35.3.136
- 78. Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med. 2000;28:480-489. https://doi.org/10.1177/03635465000280040701

CHECK Your References With the *JOSPT* Reference Library

JOSPT has created an EndNote reference library for authors to use in conjunction with PubMed/Medline when assembling their manuscript references. This addition to Author and Reviewer Tools on the JOSPT website in the Author and Reviewer Centers offers a compilation of all article reference sections published in the Journal from 2006 to date as well as complete references for all articles published by JOSPT since 1979—a total of more than 30,000 unique references. Each reference has been checked for accuracy.

This resource is **updated twice a year** on *JOSPT*'s website.

The JOSPT Reference Library can be found at: http://www.jospt.org/page/authors/author_reviewer_tools

APPENDIX

OVERALL SEARCH STRATEGY

Types: randomized controlled trial

Language: English

Dates: dates of inception to August 2017

Search Strategy for PubMed

((pain AND English[lang])) OR (treatment outcome AND English[lang])

AND

((("Manipulation, Chiropractic"[Mesh]) OR "Manipulation, Osteopathic"[Mesh]) OR manipulation) OR "Musculoskeletal Manipulations"[Mesh] OR ((mobilization AND English[lang]) OR (mobilisation AND English[lang]) OR (joint mobilisation English[lang])))

(((((manual technique AND English[lang])) OR (manual therapy AND English[lang])) OR (manipulation AND English[lang]))) AND (((pain AND English[lang]))) OR (treatment outcome AND English[lang]))

ΔNID

(((((anterior knee pain) OR patellofemoral pain) AND English[lang])) AND ((((((manual technique AND English[lang])) OR (manual therapy AND English[lang])) OR (manipulation AND English[lang]))) AND (((pain AND English[lang])) OR (treatment outcome AND English[lang])))

Search Strategy for Ovid

exp Pain/ or exp Patellofemoral Pain Syndrome/ or exp Patellofemoral Pain/ exp Musculoskeletal Pain/ or mobilization AND English[lang]) OR (mobilisation AND English[lang]) OR (joint mobilization AND English[lang]))

AND

exp Manipulation, Orthopedic/ or exp Manipulation, Chiropractic/ or exp Manipulation, Spinal/ or exp Manipulation, Osteopathic/

AND

1 and 2

AND

exp Patellofemoral Pain Syndrome/ or exp Patellofemoral Joint/

3 and 4

Search Strategy for Cochrane Central Register of Controlled Trials

Outcome terms (combine terms with OR)

Pain OR Treatment outcome

AND

Intervention / Exposure / Diagnostic Test (combine with OR)

Musculoskeletal Manipulations OR

OR Manipulation, Chiropractic, OR Manipulation, Osteopathic OR Manipulation, Orthopaedic

AND

Comparator terms (combine terms with OR if more than one). Note, may not be needed if placebo is the comparison or no comparison specified.

Patellofemoral pain (#1 or #2)

AND

Intervention Terms (#4 or #5 or #6 or #7)

AND

Population terms (limits may be used in actual syntax)

Patellofemoral pain

Additional Limits (based on Inclusion/Exclusion Criteria)

Search Strategy for CINAHL

(MM "Pain+") OR (MM "Knee Pain+") OR (MM "Patellofemoral Pain Syndrome") OR (MH "Myofascial Pain Syndromes+")

(MM "Manipulation, Orthopedic") OR (MM "Manipulation, Chiropractic") OR (MM "Manipulation, Osteopathic") OR (MM "Manual Therapy+") OR (mobilization) OR (mobilization) OR (joint mobilization) or (joint mobilization)

AND

1 AND 2

Intervention Terms (#4 or #5 or #6 or #7)

AND

((MH "Patellofemoral Pain Syndrome") OR (MH "Knee Pain") OR (MH "Myofascial Pain Syndromes"))

Abbreviations: exp, exploded; lang, language; Mesh, medical subject heading; MH, major and minor heading search; MM, major heading search.

STEPHANIE R. FILBAY, BPhty (Hons), PhD¹ • ILANA N. ACKERMAN, BPhty (Hons), PhD² • SANJAY DHUPELIA, MBBS, FRANZCR^{3,4}
NIGEL K. ARDEN, MD, FRCP¹ • KAY M. CROSSLEY, BAppSc (Physio), PhD⁵

Quality of Life in Symptomatic Individuals After Anterior Cruciate Ligament Reconstruction, With and Without Radiographic Knee Osteoarthritis

- STUDY DESIGN: Clinical measurement, crosssectional.
- BACKGROUND: Individuals who have undergone anterior cruciate ligament (ACL) reconstruction commonly experience long-term impairments in quality of life (QoL), which may be related to persistent knee symptoms or radiographic osteoarthritis (ROA). Understanding the impact of knee symptoms and ROA on QoL after ACL reconstruction may assist in the development of appropriate management strategies.
- OBJECTIVES: To (1) compare QoL between groups of individuals after ACL reconstruction (including those who are symptomatic with ROA, symptomatic without ROA, and asymptomatic [unknown ROA status]), and (2) identify specific aspects of QoL impairment in symptomatic individuals with and without ROA post ACL reconstruction.
- METHODS: One hundred thirteen participants completed QoL measures (Knee injury and Osteoarthritis Outcome Score QoL subscale [KOOS-QoL], Anterior Cruciate Ligament Quality of Life [ACL-QoL], Assessment of Quality of Life-8 Dimensions [AQoL-8D]) 5 to 20 years after ACL reconstruction. Eighty-one symptomatic individuals underwent radiographs, and 32 asymptomatic individuals formed a comparison group. Radiographic osteoarthritis was defined as a Kellgren-Lawrence grade of 2 or greater for the tibiofemoral

- and/or patellofemoral joints. Mann-Whitney $\it U$ tests compared outcomes between groups. Individual ACL-QoL items were used to explore specific aspects of QoL.
- **RESULTS:** In symptomatic individuals after ACL reconstruction, ROA was related to worse kneerelated outcomes on the KOOS-QoL (median, 50; interquartile range [IQR], 38-69 versus median, 69; IQR, 56-81; *P*<.001) and the ACL-QoL (median, 51; IQR, 38-71 versus median, 66; IQR, 50-82; *P* = .04). The AQoL-8D scores showed that health-related QoL was impaired in both symptomatic groups compared to the asymptomatic group. The ACL-QoL item scores revealed greater limitations and concern surrounding sport and exercise and social/emotional difficulties in the symptomatic group with ROA.
- **CONCLUSION:** Osteoarthritis is associated with worse knee-related QoL in symptomatic individuals after ACL reconstruction. Diagnosing ROA in symptomatic individuals after ACL reconstruction may be valuable, because these individuals may require unique management. Targeted strategies to facilitate participation in satisfying activities have potential to improve QoL in symptomatic people with ROA after ACL reconstruction. *J Orthop Sports Phys Ther* 2018;48(5):398-408. doi:10.2519/jospt.2018.7830
- KEY WORDS: pain, physical activity, psychological, radiology/medical imaging, sport

steoarthritis of the knee is a leading cause of disability worldwide.5 Individuals who experience symptomatic radiographic osteoarthritis (ROA) may endure chronic pain and physical activity limitations that can impact quality of life (QoL).1,5,31 Although knee ROA is most prevalent among older adults,5 young individuals participating in competitive sport who rupture their anterior cruciate ligament (ACL) are at high risk of developing knee ROA within 10 years of injury. 22,28 The desire to continue participation in high-impact sports, combined with work and parenting responsibilities inherent in these young adults, may contribute to the impaired QoL described in some individuals 5 to 20 years after ACL reconstruction.9,10 However, the impact of symptomatic ROA on QoL after ACL reconstruction is poorly understood. Consequently, the clinical importance of diagnosing ROA in symptomatic individuals after ACL reconstruction is unclear, and information to guide strat-

'Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, United Kingdom. ²Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia. ³Queensland X-Ray, Greenslopes Private Hospital, Brisbane, Australia. ⁴Faculty of Medicine, University of Queensland, Herston, Australia. ⁵La Trobe Sport and Exercise Medicine Research Centre, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia. Ethical approval for this study was obtained from the University of Queensland Medical Research Ethics Committee (approval number 2012001240). Funding for this study was awarded by the Physiotherapy Research Foundation (seeding grant number S13-004). The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Stephanie Filbay, University of Oxford, Botnar Research Centre, Windmill Road, Headington, Oxfordshire, UK OX3 7LD. E-mail: stephanie.filbay@uq.net.au @ Copyright ©2018 *Journal of Orthopaedic & Sports Physical Therapy*®

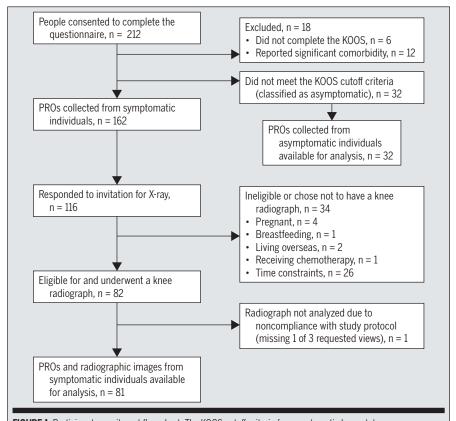
egies to improve QoL in this population is limited.

After ACL reconstruction, QoL was similar between individuals with and without tibiofemoral ROA (defined as a Kellgren-Lawrence grade of 2 or above14).6,20,24 However, QoL was worse in people with severe tibiofemoral ROA after ACL reconstruction (Kellgren-Lawrence grade 4) compared to those without ROA.²⁴ The impact of patellofemoral ROA on QoL is unclear, due to disagreement in the literature. 6,21,23 To date, all studies investigating the relationship between QoL and ROA after ACL reconstruction have not considered symptomatic status. Consequently, the complex relationship between knee symptoms, ROA, and QoL following ACL reconstruction has not been investigated. Additionally, the relevance of ROA findings in symptomatic individuals after ACL reconstruction is uncertain. An exploration of QoL among symptomatic individuals after ACL reconstruction, with and without ROA, could provide new insights.

The aims of this study were (1) to compare QoL between individuals after ACL reconstruction who were (a) symptomatic with ROA, (b) symptomatic without ROA, and (c) asymptomatic (unknown ROA status); and (2) to identify specific aspects of QoL impairment in symptomatic individuals with and without ROA after ACL reconstruction.

METHODS

Study Design


HIS CROSS-SECTIONAL STUDY WAS reported according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist for cross-sectional studies. Ethical approval for this study was obtained from the University of Queensland Medical Research Ethics Committee (approval number 2012001240).

Participants

Individuals were recruited from a larger cross-sectional study investigating QoL

in people with knee difficulties 5 to 20 years following ACL reconstruction.9 Details of the recruitment procedure and eligibility criteria for the larger study have been published previously.9 In brief, to be eligible for the cross-sectional study, individuals had to be 18 to 55 years of age, have had a hamstring or patellar tendon autograft ACL reconstruction 5 to 20 years previously, report no substantial comorbidities likely to impact QoL, and report knee difficulties. Considering no validated criteria exist for categorizing individuals post ACL reconstruction as "symptomatic," we adapted published criteria for the purposes of this study.^{9,26} Symptomatic knee status was defined as reporting impairment on at least 2 Knee injury and Osteoarthritis Outcome Score (KOOS) subscales. Impairment was determined

by a 1-step decrease from the best response to at least 50% of items within a subscale, which determined the following cutoffs: pain less than or equal to 86.1, symptoms less than or equal to 85.7, activities of daily living less than or equal to 86.8, sport and recreation less than or equal to 85.0, and QoL less than or equal to 87.5. Thirty-two of the 194 individuals who completed the questionnaire did not meet the KOOS cutoff criteria and were categorized as asymptomatic. These individuals were not invited for a knee radiograph, but their questionnaire data were used for comparison with symptomatic individuals post ACL reconstruction. Study information and an invitation to receive a knee radiograph were sent to all 162 individuals who met the KOOS cutoff criteria. FIGURE 1 describes the recruitment

FIGURE 1. Participant recruitment flow chart. The KOOS cutoff criteria for symptomatic knee status were determined by applying a cutoff that equates to a 1-step decrease from the best response for at least 50% of items within 2 or more subscales (resulting in the following cutoffs: pain, 86.1 or lower; symptoms, 85.7 or lower; activities of daily living, 86.8 or lower; sport/recreation, 85.0 or lower; and quality of life, 87.5 or lower). Abbreviations: KOOS, Knee injury and Osteoarthritis Outcome Score; PRO, patient-reported outcome.

process for the present study, which included radiographs from 81 individuals for grading and analysis.

Radiographic Assessment

Radiographic clinics across Australia were contacted prior to receiving a referral and informed of the study protocol and procedure. Three views of the ACLreconstructed knee(s) were requested to enable radiographic grading of the tibiofemoral and patellofemoral joints: weight-bearing posteroanterior erect in 15° of knee flexion, weight-bearing lateral in 30° of knee flexion, and nonweight-bearing skyline in 45° of knee flexion. All radiographs were graded by an experienced radiologist (S.D.) using the Kellgren-Lawrence criteria for defining ROA,14 by which osteophytes, narrowing of joint cartilage, sclerotic or pseudocystic subchondral bone, and an altered shape of the tibial or femoral condyles were considered signs of ROA. A Kellgren-Lawrence score of grade O represents no radiographic changes, grade 1 minimal changes, grade 2 definite but minimal changes, grade 3 moderate changes, and grade 4 severe radiographic changes.14 A Kellgren-Lawrence score of grade 2 or greater for the tibiofemoral or patellofemoral joint was used to define the presence of ROA.14 Radiographic osteoarthritis was further classified by the following involved compartments: medial tibiofemoral, lateral tibiofemoral, and patellofemoral. All knee radiographs were performed between September 2014 and August 2015, at a median of 9 months (interquartile range [IQR], 8-11 months) after questionnaire completion.

Although symptomatic osteoarthritis can be diagnosed without imaging, ²⁷ the presence of knee symptoms without structural changes cannot be confidently attributed to osteoarthritis. ¹⁵ Therefore, we assumed that the symptomatic group with ROA would have more symptoms related to the ROA disease process than would the symptomatic group without ROA.

Participant Characteristics

A range of information regarding participant characteristics and demographics was collected as part of the parent study. This included age, body mass index, time since last ACL reconstruction, time from injury to ACL reconstruction (dichotomized to 6 months or shorter versus longer than 6 months), contact mechanism of injury, additional surgery (additional knee surgery to an ACL-reconstructed knee not including revision ACL reconstruction or concomitant surgery performed at the time of primary or revision ACL reconstruction), and revision ACL reconstruction (yes/no). Return to sport was also assessed using the following question: "Please tick the most appropriate statement regarding your level of sport participation after injuring your ACL by selecting 1 of the following 3 options: 'I returned to competitive sport at the same or higher level than before ACL injury,' 'I returned to competitive sport at a lower level than before ACL injury,' or 'I did not return to competitive sport after my ACL reconstruction." The proportion of participants receiving current knee treatment was assessed ("Do you currently receive treatment for your knee?"), and participants were asked, "How would you rate your current knowledge of osteoarthritis?" with responses on a 5-point Likert scale (very good, good, average, poor, very poor). Due to potential difficulty recalling information surrounding the ACL injury and surgery, "unsure" response options were given (ie, questions on mechanism of ACL injury and time from injury to ACL reconstruction).

Patient-Reported Measures

All patient-reported measures used for this study were collected as part of the larger cross-sectional study. The psychometric properties for these instruments have been previously described.⁹

Knee-Related QoL The Anterior Cruciate Ligament Quality of Life (ACL-QoL) was chosen as the primary measure to evaluate knee-related QoL, because this

is the only ACL-specific QoL measure¹⁸ and contains items of clear relevance to individuals with ACL injuries.29 A unique attribute of the ACL-QoL is use of terminology that enables the responder to consider the personal impact that pain or physical deficits have on their life (eg, "How troubled are you by pain or stiffness?" and "How much of a concern is it for you to miss days from work?"). The ACL-QoL contains 31 items that fall under 5 separate domains: symptoms and physical complaints, work-related concerns, recreational activities and sport participation or competition, lifestyle, and social and emotional.18 Each item is scored on a visual analog scale ranging from 0 (severe impairment) to 100 (no impairment). Item scores are averaged to calculate the overall ACL-QoL score (range, 0-100). The ACL-QoL scores are valid for use in individuals with ACL injuries and with chronic knee difficulties,18 and have high internal consistency (Cronbach \alpha ≥.93) at 6, 12, and 24 months following ACL reconstruction.16 The ACL-QoL has been found to be responsive (using anchor-based methods) to self-rated knee improvement before and more than 2 years following ACL reconstruction.16

The KOOS was used as a secondary measure of QoL, because this is the most commonly used measure of longer-term QoL in populations with ACL reconstruction, 10 enabling comparisons with previous studies. The KOOS-QoL subscale comprises 4 questions addressing knee awareness, knee-related lifestyle modifications, knee confidence, and knee-related difficulties. 26 The KOOS items are scored on a 5-point ordinal scale, from which subscale scores are calculated ranging from 0 (severe impairment) to 100 (no impairment).

Health-Related QoL The Assessment of Quality of Life-8 Dimensions (AQoL-8D) instrument is a general health-related QoL measure with strong content, construct, and discriminative validity in populations with osteoar-thritis. ^{12,13,25,30} The AQoL-8D includes

8 dimensions (independent living, happiness, mental health, coping, relationships, self-worth, pain, senses). The AQoL-8D can provide both unweighted summary scores and weighted utility scores. Utility scores were calculated for this study. The AQoL-8D utility scores are scaled such that 0.00 represents the worst health state and 1.00 represents the best health state.

Statistical Analysis

The assumption of normality was not met for several variables; consequently, nonparametric tests were chosen, and data are reported as medians and IQRs or frequencies and percentages, as appropriate. To minimize the total number of group comparisons, we used the Kruskal-Wallis test to compare outcomes between the 3 groups. The distribution of scores was not homogeneous between groups (due to higher scores in the asymptomatic group); therefore, Kruskal-Wallis tests were performed with mean ranks rather than median scores. Differences accompanied by P less than .05 were analyzed post hoc using Mann-Whitney U tests to

determine which groups were statistically different.

To assess whether people volunteering to undergo a knee radiograph were representative of the larger cross-sectional study sample, Mann-Whitney U and chi-square tests were used, as appropriate. Due to the small amount of missing data (KOOS, no missing data; ACL-QoL, n=1 missing data [asymptomatic group]; AQoL-8D, n=2 missing data [asymptomatic group]), analyses were performed where complete data were available (ie, data from the 3 questionnaires that were incomplete were not included in the analysis).

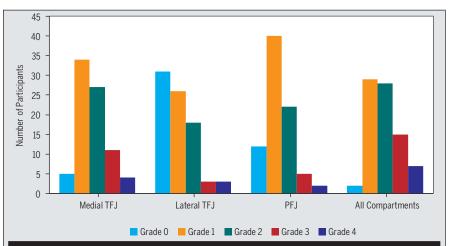
RESULTS

Sample Characteristics

PARTICIPANT CHARACTERISTICS ARE described in TABLE 1. Symptomatic participants were older than asymptomatic participants (median, 40 years; IQR, 34-49 years versus median, 34 years; IQR, 29-45 years; P = .04), more symptomatic participants had undergone additional knee surgery (54% versus 19%, P = .001), and fewer symptomatic partici-

pants had returned to a preinjury level of sport compared with asymptomatic participants (37% versus 63%, P = .01).

Compared to symptomatic participants without ROA, symptomatic participants with ROA were older (median age, 42 years; IQR, 36-49 years versus 37 years; IQR, 32-43 years; P = .02) and more overweight or obese (70% versus 45%, P = .03), and had more time since their ACL reconstruction (median, 9 years; IQR, 7-11 years versus 8 years; IQR, 6-8 years; P = .01). Symptomatic participants with ROA were also more likely to have reported a delay of greater than 6 months from ACL injury to reconstruction (41% versus 10%, P = .003), were more likely to have undergone additional knee surgery (66% versus 35%, P = .007), and were less likely to have reported a contact mechanism of ACL injury (27% versus 52%, P = .03). A similar proportion of symptomatic participants with and without ROA received current knee treatment (20% and 19%, respectively). Before undergoing a knee radiograph, 30% of symptomatic participants rated their osteoarthritis knowledge as good/ very good (34% with ROA, 23% without


TABLE 1		Sample Charac	TERISTICS*	
	All Commitment's	A	Committee Will DOA	C

	All Symptomatic (n = 81)	Asymptomatic (Unknown ROA Status) (n = 32)	P Value [†]	Symptomatic With ROA (n = 50)	Symptomatic Without ROA (n = 31)	P Value†
Age, y	40 (34-49)	34 (29-45)	.04	42 (36-49)	37 (32-43)	.02
Sex (male), n (%)	42 (52)	17 (53)	.90	27 (54)	15 (48)	.62
BMI (overweight or obese), n (%)‡	49 (61)	18 (56)	.31	35 (70)	14 (45)	.03
Years since last ACL reconstruction, y	8 (7-11)	8 (7-11)	.82	9 (7-11)	8 (6-8)	.01
>6-mo ACL reconstruction delay, n (%)§	23 (28)	8 (25)	.69	20 (41)	3 (10)	.003
Additional knee surgery, n (%)	44 (54)	6 (19)	.001	33 (66)	11 (35)	.007
Revision ACL reconstruction, n (%)	12 (15)	2 (6)	.21	9 (18)	3 (10)	.31
Contact mechanism of injury, n (%)	29 (36)	12 (40)	.75	13 (27)	16 (52)	.03
RTS at preinjury/higher level, n (%)	30 (37)	20 (63)	.01	17 (34)	13 (42)	.47
RTS at a lower level, n (%)	22 (27)	6 (19)	.20	12 (24)	10 (32)	.42
Did not RTS, n (%)	29 (36)	6 (19)	.08	21 (42)	8 (26)	.14

- $Abbreviations: ACL, anterior\ cruciate\ ligament;\ BMI,\ body\ mass\ index;\ ROA,\ radiographic\ osteoarthritis;\ RTS,\ return\ to\ sport.$
- *Values are median (interquartile range) unless otherwise indicated.
- † Calculated using Mann-Whitney U (continuous variables) or chi-square tests (binary variables).
- $^{+}$ Converted to a binary variable (normal weight versus overweight or obese), with reference to international classification guidelines (normal weight, 18.9-24.9 kg/m²; overweight, 25.0-29.9 kg/m²; obese, 30.0 kg/m² or greater). 19
- §"Unsure" responses were removed, resulting in 1 missing response (from the symptomatic group with ROA).
- 1"Unsure" responses were removed, resulting in 4 missing responses (2 from the symptomatic group with ROA and 2 from the asymptomatic group).

ROA), 30% as average (34% with ROA, 23% without ROA), and 41% as poor/very poor (32% with ROA, 55% without ROA).

There were no statistical differences in sex, body mass index, time since ACL reconstruction, proportion having additional surgery, dissatisfaction with knee function, KOOS pain score, KOOS symptoms score, or ACL-QoL score between those who underwent radiographs (n = 81) and symptomatic individuals without radiographs from the parent study (n = 81) (P>.05 for all analyses). The only statistical difference between these groups was age, such that individuals who underwent radiographs were younger than symptomatic individuals who did not undergo a knee radiograph (median age, 36 years versus 40 years; IQR, 34-49 years; P = .01).

FIGURE 2. Knee ROA prevalence by compartment and severity (n = 81). "All compartments" presents the highest grade of ROA from any compartment for each participant. A Kellgren-Lawrence grade of 0 represents no radiographic changes, grade 1 represents minimal changes, grade 2 represents definite but minimal changes, grade 3 represents moderate changes, and grade 4 represents severe radiographic changes. If both knees were reconstructed, the highest severity of ROA in either knee was reported for each compartment. Abbreviations: PFJ, patellofemoral joint; ROA, radiographic osteoarthritis; TFJ, tibiofemoral joint.

P = .09P = 0.6P<.01 100 P = .04P<.001 90 80 70 **Jedian Score** 60 50 40 30 20 10 0 KOOS ADL KOOS Pain KOOS Symptoms KOOS KOOS QoL ACL-QoL Sport/Recreation **Total Score** ■ Symptomatic With ROA ■ Symptomatic Without ROA ■ Asymptomatic (Unknown ROA Status)

FIGURE 3. Comparison of KOOS subscale scores and total ACL-QoL scores in symptomatic people after ACL reconstruction (with and without ROA) and asymptomatic participants. All outcomes were reported as medians, and error bars represent interquartile ranges. A score of 100 represents the best possible score for each outcome. *P* values were obtained using Mann-Whitney *U* tests and are reported for symptomatic with ROA (blue) versus symptomatic without ROA (orange). Abbreviations: ACL, anterior cruciate ligament; ACL-QoL, Anterior Cruciate Ligament Quality of Life questionnaire; ADL, activities of daily living; KOOS, Knee injury and Osteoarthritis Outcome Score; QoL, quality of life; ROA, radiographic osteoarthritis.

Radiographic Findings

The prevalence of ROA by knee compartment and radiographic severity score is presented in **FIGURE 2**. When all compartments were considered together, 2 (2.5%) participants had grade 0 (no) ROA, 29 (36%) had grade 1 (minimal) ROA, 28 (34.5%) had grade 2 (definite) ROA, 15 (18.5%) had grade 3 (moderate) ROA, and 7 (8.5%) had grade 4 (severe) ROA.

Comparisons in QoL

Knee-Related QoL Symptomatic participants with ROA reported worse QoL on the KOOS-QoL subscale (median, 50; IQR, 38-69 versus 69; IQR, 56-81; P<.001) and the ACL-QoL (median, 51; IQR, 38-71 versus 66; IQR, 50-82; P = .04) compared to symptomatic participants without ROA (FIGURE 3). Asymptomatic participants reported better KOOS and ACL-QoL scores compared with symptomatic participants with and without ROA (all, P<.001).

Health-Related QoL No statistical differences were observed in overall AQoL-8D scores between symptomatic participants with and without ROA (FIGURE 4). However, all AQoL-8D domains and utility scores were impaired in symptomatic participants with and without ROA compared to asymptomatic individuals (all, P<.03), with the exception of the self-worth domain, which was not statistically different between symptomatic participants without ROA and asymptomatic participants (P = .12).

Specific Aspects of QoL Impairment

Symptoms and Physical Complaints Pain, stiffness, and knee weakness were common among symptomatic participants, but trouble with giving-way episodes was rare (**TABLE 2**). There were no statistical differences in the impact of symptoms and physical complaints on QoL of symptomatic individuals with and without ROA (**TABLE 2**). Symptoms and physical complaints were more impaired in symptomatic participants with ROA (all items, $P \le .003$) and without ROA (all items, $P \le .001$) compared to asymptomatic individuals.

Work-Related Concerns Symptomatic participants reported trouble with squatting motions at work, and ceiling effects were evident for other items (TABLE 2). There were no statistical differences in work-related concerns between symptomatic individuals with and without ROA (TABLE 2). All work-related concerns were worse in symptomatic participants with ROA (all items, *P*<.02) compared to asymptomatic individuals. The only item that did not differ between the groups was concern regarding loss of time from work due to knee treatment.

Recreational Activities and Sport Participation Compared to participants without ROA, participants with ROA reported worse athletic performance compared with preinjury performance, were more likely to play sport under caution, were more concerned with environmental conditions, found it difficult to go full out during sport, were more fearful of playing sport, and reported greater difficulties taking part in their second most important sport or activity (all, P<.05). Sport and recreational impairments had a greater impact on QoL for symptomatic participants with ROA (all items, P<.001) and without ROA (all items, P < .04) compared to asymptomatic individuals. Asymptomatic participants expressed concern that sport or recreational activity might result in worsening of their knee status (question 10 median, 64; IQR, 50-100), although they were less concerned than symptomatic individuals (with ROA: median, 27; IQR, 2-53; without ROA: median, 27; IQR, 12-65).


Lifestyle All items related to lifestyle factors were worse in symptomatic individuals with ROA, including concern with general safety issues, limitations in exercising and maintaining fitness, reduced enjoyment of life, more awareness of knee problems, greater knee concerns during family activities, and more lifestyle modifications. All lifestyle items were more impaired in symptomatic participants with ROA (P<.001) and without ROA (P<.05) compared to asymptomatic individuals.

Social and Emotional Social and emotional items were more impaired in symptomatic people with ROA, including concern that competitive needs were not being met, being apprehensive, difficulty coming to grips with knee problems, and worse knee confidence (**TABLE 2**). Social and emotional impairments were greater in symptomatic participants with ROA (*P*<.001) and without ROA (*P*<.03) compared to asymptomatic individuals.

DISCUSSION

N INDIVIDUALS WITH KNEE SYMPTOMS more than 5 years after ACL reconstruction, ROA in the tibiofemoral and/or patellofemoral joint was related to worse knee-related QoL. Although health-related QoL was similar between symptomatic people with and without ROA, this was impaired compared to an asymptomatic ACL-reconstructed group. Exploring specific ACL-QoL items revealed aspects of QoL that were more impaired in symptomatic individuals with ROA, including sport and recreation limitations, lifestyle factors, and social/emotional difficulties.

Concerns about sport limitations were common for both symptomatic groups, and to a greater degree in people with ROA. Items that were more impaired in those with ROA included reduced sports performance, playing sport under caution, concern with sports environment, difficulty going full out, fear of contact sports, and limitations in preferred activities. Our previous study found that not returning to sport after ACL reconstruction was associated with worse QoL 5 to 20 years after ACL reconstruction in

FIGURE 4. Comparison of Assessment of Quality of Life-8 Dimensions utility scores in symptomatic people after ACL reconstruction (with and without ROA) and asymptomatic participants. All outcomes were reported as medians, and error bars represent interquartile ranges. A score of 1.0 represents the best possible score. *P* values were obtained using Mann-Whitney *U* tests and are reported for symptomatic with ROA (blue) versus symptomatic with ROA (orange). Abbreviations: ACL, anterior cruciate ligament; ROA, radiographic osteoarthritis.

people with knee symptoms.⁹ Furthermore, ACL-QoL items surrounding sport have been rated of highest importance by a group of patients after ACL reconstruction.²⁹ Our qualitative research in this area also found that maintaining a satisfying, physically active lifestyle was a critical component of longer-term QoL after ACL reconstruction.¹¹ However, this is the first study to demonstrate the importance of sport participation among symptomatic people with ROA after ACL reconstruction.

Participants with ROA reported difficulty exercising and maintaining fitness due to their knee. Exercise and strength training are recommended as core treatments for reducing pain and improving function in people with knee osteoarthritis.¹⁷ Of concern is that 41% of participants with knee symptoms reported their osteoarthritis knowledge as poor or very poor (including 1 in 3 individuals with ROA), and only 20% were receiving treatment for their knee. The rehabilitation period provides an important opportunity for physical therapists to deliver osteoarthritis education and develop a long-term physical activity plan. While return to sport is a common goal of ACL rehabilitation, it is not known whether physical therapists discuss strategies for maintaining an active lifestyle across the lifespan. Additionally, symptomatic individuals with ROA commonly experienced poor knee confidence and reinjury fears. Addressing these potential barriers to physical activity may have positive impacts on QoL. There is a need to develop effective strategies to reduce fear of reinjury and improve knee confidence in symptomatic individuals after ACL reconstruction.

It is possible that difficulty exercising and maintaining fitness in symptomatic individuals with ROA after ACL reconstruction is greater for those with a strong preference for participation in competitive sports. Notably, people with ROA were more likely to express concern that their competitive needs were no

┰	Α.	n		•	•
	A١	В	L	E.	Z

ACL-QoL Item Scores and Comparison Between ACL-Reconstructed Groups*

		Symptomatic With ROA	Symptomatic Without ROA	Asymptomatic (Unknown ROA Status)
ACL-QoL	. Item	(n = 50)	(n = 31)	(n = 31)†
Symptom	ns and physical complaints			
1. Wi	ith respect to your overall knee function, how troubled are you by giving-way episodes?			
a.	Severity of giving-way episodes	99 (83-100)	96 (90-100)	100 (100-100)
b.	Frequency of giving-way episodes	98 (88-100)	96 (90-100)	100 (100-100)
	ith any kind of prolonged activity (ie, >30 min), how much pain or discomfort do you get in our knee?	68 (44-87)	83 (54-87)	100 (90-100)
	ith respect to your overall knee function, how much are you troubled by stiffness or loss of otion in your knee?	77 (43-92)	79 (58-88)	96 (86-100)
	onsider the overall function of your knee and how it relates to the strength of your muscles. ow weak is your knee?	64 (38-84)	72 (48-85)	93 (86-100)
Work-rela	ated concerns			
5. Ho	ow much trouble do you have, because of your knee, with turning or pivoting motions at work?	92 (75-100)	100 (89-100)	100 (100-100)
6. Ho	ow much trouble do you have, because of your knee, with squatting motions at work?	57 (26-90)	75 (50-97)	100 (96-100)
	ow much of a concern is it for you to miss days from work due to problems or reinjury to your nee?	100 (53-100)	100 (86-100)	100 (100-100)
	ow much of a concern is it for you to lose time from "school" or work because of the treatment your ACL-reconstructed knee?	99 (53-100)	100 (88-100)	100 (100-100)
Recreatio	onal activities and sport participation or competition			
	ow much limitation do you have with sudden twisting and pivoting movements or changes in rection?	63 (31-97)	72 (53-90)	99 (88-100)
	ow much of a concern is it for you that your sporting or recreational activities may result in the atus of your knee worsening?	27 (2-53)	27 (12-65)	64 (50-100)
	ow does your current level of athletic or recreational performance compare with your preinjury vel?	32 (11-75) [‡]	61 (48-80)	95 (78-100)
	ith respect to activities/sports that you desire to be involved with, how much have your spectations changed because of your knee?	29 (6-71)	50 (25-74)	97 (81-100)
13. Do	o you have to play your recreation or sport under caution?	18 (0-49)§	47 (3-90)	86 (54-100)
14. Ho	ow fearful are you of your knee giving way when playing recreation or sport?	30 (6-74)	61 (13-100)	94 (63-100)
				Table continues on page 405.

longer being met due to their knee problem than were symptomatic people without ROA. We recently found that individuals with a strong preference to be active through competitive sport risked adopting an inactive lifestyle and experiencing reduced QoL if their knee limited them from pursuing sports activities.11 Current osteoarthritis treatment recommendations largely target older patients3,7 and, as such, may not address all aspects of importance to a symptomatic population with ROA after ACL reconstruction. Specifically, prioritizing sport participation, fulfilling competitive needs, and fear of reinjury may be largely unique to individuals after ACL reconstruction. For symptomatic individuals with ROA after ACL reconstruction who express a strong preference to be active through competitive sports, discovering activities that meet their competitive needs and do not exacerbate their knee symptoms or function could positively impact QoL. Modifications of team sports, such as walking football and walking netball, could provide appropriate alternatives to high-impact sports. Further research is needed to explore this possibility.

Our findings do not necessarily support the use of radiographs to diagnose

knee osteoarthritis. Rather, they highlight the value in diagnosing ROA in symptomatic individuals after ACL reconstruction. Symptoms due to osteoarthritis should be managed differently from those unrelated to osteoarthritis. For example, recommended osteoarthritis management includes osteoarthritis education, physical activity pacing (small amounts often), weight loss, specialized footwear, walking aids, and joint replacement surgery for severe osteoarthritis.3,7 These treatments may be inappropriate for symptomatic individuals without ROA after ACL reconstruction, further highlighting the value in diagnosing

Asymptomatic

Symptomatic

TABLE 2

ACL-QoL Item Scores and Comparison Between ACL-Reconstructed Groups* (CONTINUED)

ACL-QoL Item	Symptomatic With ROA (n = 50)	Without ROA (n = 31)	(Unknown ROA Status) (n = 31)†
15. Are you concerned about environmental conditions, such as a wet playing field or a hard court, when involved in your recreation or sport?	20 (6-68)§	53 (18-90)	90 (50-100)
16. Do you find it frustrating to have to consider your knee with respect to your recreation or sport?	15 (0-49)	35 (4-90)	94 (79-100)
17. How difficult is it for you to "go full out" at your recreation or sport?	13 (0-50)§	47 (11-92)	90 (56-100)
18. Are you fearful of playing contact sports?	10 (0-47)§	45 (9-84)	90 (46-100)
19. How limited are you in playing the number "1" sport or activity?	39 (1-82)	70 (36-90)	96 (85-100)
20. How limited are you in playing the number "2" sport or activity?	34 (0-75)§	71 (22-94)	96 (81-100)
Lifestyle			
21. Do you have to concern yourself with general safety issues (eg, carrying small children, working in the yard) with respect to your knee?	85 (50-100) [‡]	100 (82-100)	100 (100-100)
22. How much has your ability to exercise and maintain fitness been limited by your knee problem?	47 (22-81) [‡]	84 (50-95)	100 (94-100)
23. How much has your enjoyment of life been limited by your knee problem?	70 (48-92) [‡]	94 (83-100)	100 (98-100)
24. How often are you aware of your knee problem?	22 (2-75) [‡]	53 (22-80)	95 (89-98)
25. Are you concerned about your knee with respect to lifestyle activities that you and your family do together?	53 (29-90)‡	91 (66-100)	100 (90-100)
26. Have you modified your lifestyle to avoid potentially damaging activities to your knee?	37 (15-75) [‡]	75 (45-94)	96 (81-100)
Social and emotional			
27. Does it concern you that your competitive needs are no longer being met because of your knee problem?	47 (20-82) [‡]	87 (42-100)	100 (91-100)
28. Have you had difficulty being able to psychologically "come to grips" with your knee problem?	82 (50-97)§	95 (79-100)	100 (100-100)
29. How often are you apprehensive about your knee?	51 (34-88)§	81 (50-98)	96 (84-100)
30. How much are you troubled with lack of confidence in your knee?	55 (31-88)§	80 (50-100)	98 (92-100)
31. How fearful are you of reinjuring your knee?	36 (5-75)	45 (17-86)	86 (40-100)
Total ACL-QoL score	51 (37-71)§	66 (50-82)	92 (81-98)

Abbreviations: ACL, anterior cruciate ligament; ACL-QoL, Anterior Cruciate Ligament Quality of Life questionnaire; ROA, radiographic osteoarthritis.

*Values are median (interquartile range). P values were obtained from the Mann-Whitney U test. The wording for some questions was shortened due to space limitations (see Mohtadi¹s for precise wording).

[†]One person from the asymptomatic group did not complete the ACL-QoL.

[‡]P<.01.

[§]P<.05.

ROA in this population. Ideally, symptomatic osteoarthritis can be diagnosed through clinical assessment rather than by obtaining a knee radiograph, in line with European League Against Rheumatism guidelines.27 However, imaging is recommended to help confirm alternative diagnoses, and there is a shortage of studies investigating the added benefit of imaging over clinical findings for diagnosing knee osteoarthritis.27 Importantly, recommendations regarding use of imaging to diagnose osteoarthritis have not been made specifically for individuals after ACL reconstruction who may present with different knee symptoms compared with the typical population without ACL injury. Further research is needed to evaluate whether clinical assessment can accurately diagnose osteoarthritis in people with knee symptoms after ACL reconstruction.

We found less QoL impairment in the asymptomatic group (irrespective of ROA status) compared to symptomatic patients with and without ROA. This suggests that more knee symptoms may have a negative impact on QoL. To provide further information regarding whether pain and symptom severity alone could explain the difference in QoL between symptomatic groups with and without ROA, we performed a post hoc analysis. The ACL-QoL scores stratified by KOOS pain and KOOS symptoms severity are presented in the APPENDIX (available at www.jospt.org). Symptomatic individuals with ROA appeared to have worse QoL, with similar degrees of knee pain and symptoms, compared to symptomatic individuals without ROA. Notably, we could not determine the significance of any between-group difference due to insufficient power. Exploring differences in QoL between ROA and non-ROA groups, stratified by knee pain and symptom severity, could be an important area for future research.

Although sport limitations appear to be related to ROA 5 to 20 years after ACL reconstruction, few studies have investigated the relationship between return to preinjury sport (at any time after ACL reconstruction) and the development of ROA.² We found similar return-to-sport rates in symptomatic people with and without ROA after ACL reconstruction, and our previous investigations found that return to sport was not related to ROA in this sample.⁸ While this provides some evidence that returning to sport after ACL reconstruction may not be associated with ROA development, additional prospective research is required to explore this relationship further.

Strengths and Limitations

This is the first study to explore specific aspects of QoL in symptomatic individuals with and without ROA after ACL reconstruction, providing clinically applicable information that may be used to guide the development of strategies to improve longer-term QoL after ACL reconstruction. Additional strengths of this study include radiographing both the tibiofemoral and patellofemoral joints and including symptomatic and asymptomatic groups. Although the ACL-QoL contains many items of importance to individuals after ACL reconstruction and its psychometric properties have been previously evaluated,16 it was designed to address aspects of QoL relevant for ACLdeficient people with knee difficulties.18 Consequently, validity of this measure for use in individuals with knee difficulties 5 to 20 years after ACL reconstruction is unclear. We found that using the ACL-QoL in this sample resulted in potential item redundancy (very similar participant scores for items assessing similar aspects of QoL (eg, items 13 and 17, and items 29 and 30) and a ceiling effect for 5 items (1a, 1b, 5, 7, and 8), which suggests that these items may be inappropriate for use in people with knee symptoms more than 5 years after ACL reconstruction.

A limitation of this study was that only 50% of individuals from the parent study elected to undergo a knee radiograph. Despite similar characteristics between radiographed and nonradiographed individuals, the proportion of individuals

choosing not to undergo a radiograph might impact the generalizability of results. For instance, these results may be less applicable to older individuals (ie, those who did not undergo radiographs were older on average) or those with less time to undergo a knee radiograph (not enough time was the most common reason for rejecting the invitation for knee radiography). Assuming a pooled standard deviation of 16 units on the ACL-QoL,16 we required 28 participants per group to achieve a power of 80% and a level of significance of 5% (2 sided) for detecting a true difference between groups of 12 units on the ACL-QoL. Due to the nature of recruitment, we were underpowered to detect true differences between groups of fewer than 12 units on the ACL-QoL.

Unfortunately, it was not practical for participants to complete the questionnaire at the time of radiography. Consequently, participants' pain and symptoms could have changed between questionnaire completion and radiography (median, 9 months). To assess this, a proportion of symptomatic participants (n = 56, 34%) recompleted the KOOS a mean \pm SD of 12 \pm 1 months (range, 10-18 months) after completing the previous questionnaire. Wilcoxon signed-rank tests indicate that KOOS pain, symptoms, and function subscale scores were all similar between these 2 time points $(P \ge .05 \text{ for all analyses})$, with no clinically relevant differences identified according to the minimal important change for this instrument.4 Notably, no validated criteria exist to define knee difficulties in individuals after ACL reconstruction, so we adapted criteria from a prior study. A limitation of using this approach was that individuals who did not meet these criteria (forming the "asymptomatic group") could have experienced some knee difficulties (ie, impairment in 1 of the 5 KOOS subscales or slight impairment in more than 1 KOOS subscale). Additionally, the cross-sectional design only allowed us to examine associations rather than causal inferences.

CONCLUSION

YMPTOMATIC INDIVIDUALS WITH ROA after ACL reconstruction experienced greater knee-related QoL impairment than symptomatic individuals without ROA. Health-related QoL was impaired in all symptomatic individuals after ACL reconstruction, irrespective of ROA status. We identified specific aspects of QoL that were impaired in symptomatic people with ROA, highlighting greater limitations and concern surrounding sport and exercise and social/emotional difficulties in this subgroup of individuals. It may be important to extend focus beyond return to sport, to include maintenance of a physically active lifestyle across the lifespan following ACL reconstruction. There may be benefit in diagnosing ROA in symptomatic individuals after ACL reconstruction, as these individuals may require different management from symptomatic individuals without ROA. Additionally, symptomatic individuals after ACL reconstruction with osteoarthritis may have unique needs that are not addressed in current osteoarthritis management guidelines.

KEY POINTS

FINDINGS: Symptomatic individuals after anterior cruciate ligament (ACL) reconstruction with radiographic osteoarthritis (ROA) experienced worse knee-related quality of life (QoL) than did symptomatic individuals after ACL reconstruction without ROA. Healthrelated QoL was impaired to a similar degree in people with knee symptoms compared to an asymptomatic group after ACL reconstruction. Specific aspects of QoL that were more impaired in symptomatic people with ROA included sport and exercise limitations, reduced enjoyment of life, family-related activity limitations, and emotional troubles. IMPLICATIONS: There may be value in diagnosing osteoarthritis in symptomatic individuals after ACL reconstruction, as these individuals may require different management than symptomatic individuals after ACL reconstruction without osteoarthritis. Current osteoarthritis treatment recommendations may not address all aspects of importance to symptomatic individuals after ACL reconstruction with osteoarthritis. Personalized strategies to increase participation in preferred forms of exercise and enhance knee confidence may have potential to improve longer-term QoL in symptomatic people with osteoarthritis following ACL reconstruction.

CAUTION: The Anterior Cruciate Ligament Quality of Life instrument was designed to address aspects of QoL relevant for people with ACL injury and knee difficulties; as such, the instrument may not address all aspects of QoL relevant to individuals following ACL reconstruction with longer-term knee difficulties. The cross-sectional design only allowed us to examine associations rather than causal inferences.

REFERENCES

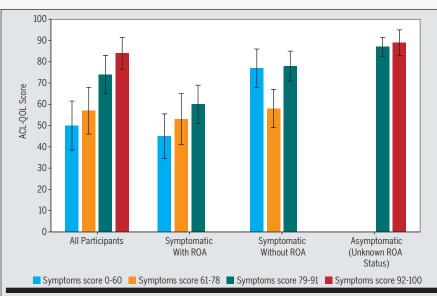
- Ackerman IN, Graves SE, Wicks IP, Bennell KL, Osborne RH. Severely compromised quality of life in women and those of lower socioeconomic status waiting for joint replacement surgery. Arthritis Rheum. 2005;53:653-658. https://doi. org/10.1002/art.21439
- Ajuied A, Wong F, Smith C, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2014;42:2242-2252. https://doi. org/10.1177/0363546513508376
- 3. Australian Commission on Safety and Quality in Health Care. Osteoarthritis of the Knee Clinical Care Standard. Sydney, Australia: Australian Commission on Safety and Quality in Health Care; 2017.
- 4. Collins NJ, Prinsen CA, Christensen R, Bartels EM, Terwee CB, Roos EM. Knee injury and Osteoarthritis Outcome Score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthritis Cartilage. 2016;24:1317-1329. https://doi.org/10.1016/j.joca.2016.03.010
- 5. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. *Ann Rheum Dis*. 2014;73:1323-1330. https://doi. org/10.1136/annrheumdis-2013-204763
- 6. Culvenor AG, Lai CC, Gabbe BJ, et al.

- Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction. *Br J Sports Med.* 2014;48:435-439. https://doi.org/10.1136/bjsports-2013-092975
- Fernandes L, Hagen KB, Bijlsma JW, et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. *Ann Rheum Dis*. 2013;72:1125-1135. https://doi. org/10.1136/annrheumdis-2012-202745
- 8. Filbay SR, Ackerman IN, Russell TG, Crossley KM. Factors associated with radiographic osteoarthritis in people with knee pain, symptoms or functional limitations after anterior cruciate ligament reconstruction [abstract]. Osteoarthritis Cartilage. 2016;24:S407-S408. https://doi.org/10.1016/j.joca.2016.01.736
- Filbay SR, Ackerman IN, Russell TG, Crossley KM. Return to sport matters—longer-term quality of life after ACL reconstruction in people with knee difficulties. Scand J Med Sci Sports. 2017;27:514-524. https://doi.org/10.1111/sms.12698
- 10. Filbay SR, Ackerman IN, Russell TG, Macri EM, Crossley KM. Health-related quality of life after anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2014;42:1247-1255. https://doi. org/10.1177/0363546513512774
- 11. Filbay SR, Crossley KM, Ackerman IN. Activity preferences, lifestyle modifications and re-injury fears influence longer-term quality of life in people with knee symptoms following anterior cruciate ligament reconstruction: a qualitative study. J Physiother. 2016;62:103-110. https://doi.org/10.1016/j.jphys.2016.02.011
- **12.** Hawthorne G, Osborne R. Population norms and meaningful differences for the Assessment of Quality of Life (AQoL) measure. *Aust N Z J Public Health*. 2005;29:136-142.
- Hawthorne G, Richardson J, Osborne R. The Assessment of Quality of Life (AQoL) instrument: a psychometric measure of health-related quality of life. Oual Life Res. 1999;8:209-224.
- Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494-502. https://doi.org/10.1136/ ard.16.4.494
- 15. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage. 2015;23:1233-1241. https://doi.org/10.1016/j. joca.2015.03.036
- 16. Lafave MR, Hiemstra L, Kerslake S, Heard M, Buchko G. Validity, reliability, and responsiveness of the anterior cruciate ligament–quality of life measure: a continuation of its overall validation. Clin J Sport Med. 2017;27:57-63. https://doi. org/10.1097/JSM.0000000000000292
- McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:363-388.

- https://doi.org/10.1016/j.joca.2014.01.003
- 18. Mohtadi N. Development and validation of the quality of life outcome measure (questionnaire) for chronic anterior cruciate ligament deficiency. *Am J Sports Med*. 1998;26:350-359. https://doi. org/10.1177/03635465980260030201
- 19. National Obesity Education Initiative Expert Panel. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Bethesda, MD: National Heart, Lung, and Blood Institute; 1998.
- Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med. 2008;36:1717-1725. https://doi. org/10.1177/0363546508316770
- 21. Neuman P, Kostogiannis I, Fridén T, Roos H, Dahlberg LE, Englund M. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury a prospective cohort study. Osteoarthritis Cartilage. 2009;17:284-290. https://doi.org/10.1016/j.joca.2008.07.005
- 22. Øiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37:1434-1443. https://doi. org/10.1177/0363546509338827

- 23. Øiestad BE, Holm I, Engebretsen L, Aune AK, Gunderson R, Risberg MA. The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21:942-949. https://doi.org/10.1007/s00167-012-2161-9
- 24. Øiestad BE, Holm I, Engebretsen L, Risberg MA. The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10-15 years after anterior cruciate ligament reconstruction. Br J Sports Med. 2011;45:583-588. https://doi.org/10.1136/bjsm.2010.073130
- Richardson J, Iezzi A, Khan MA, Maxwell A. Validity and reliability of the Assessment of Quality of Life (AQoL)-8D multi-attribute utility instrument. *Patient*. 2014;7:85-96. https://doi. org/10.1007/s40271-013-0036-x
- 26. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28:88-96. https://doi. org/10.2519/jospt.1998.28.2.88
- 27. Sakellariou G, Conaghan PG, Zhang W, et al. EULAR recommendations for the use of imaging in the clinical management of peripheral joint osteoarthritis. Ann Rheum Dis. 2017;76:1484-1494. https://doi.org/10.1136/

- annrheumdis-2016-210815
- 28. Suter LG, Smith SR, Katz JN, et al. Projecting lifetime risk of symptomatic knee osteoarthritis and total knee replacement in individuals sustaining a complete anterior cruciate ligament tear in early adulthood. *Arthritis Care Res (Hoboken)*. 2017;69:201-208. https://doi.org/10.1002/acr.22940
- **29.** Tanner SM, Dainty KN, Marx RG, Kirkley A. Knee-specific quality-of-life instruments: which ones measure symptoms and disabilities most important to patients? *Am J Sports Med.* 2007;35:1450-1458. https://doi.org/10.1177/0363546507301883
- 30. Whitfield K, Buchbinder R, Segal L, Osborne RH. Parsimonious and efficient assessment of health-related quality of life in osteoarthritis research: validation of the Assessment of Quality of Life (AQoL) instrument. Health Qual Life Outcomes. 2006;4:19. https://doi. org/10.1186/1477-7525-4-19
- **31.** World Health Organization. The Global Burden of Disease: 2004 Update. Geneva, Switzerland: World Health Organization; 2008.


GO GREEN By Opting Out of the Print Journal

JOSPT subscribers and APTA members of the Orthopaedic and Sports Physical Therapy Sections can **help the environment by "opting out"** of receiving JOSPT in print each month as follows. If you are:

- A JOSPT subscriber: Email your request to jospt@jospt.org or call the JOSPT office toll-free at 1-877-766-3450 and provide your name and subscriber number.
- APTA Orthopaedic or Sports Section member: Go to http://www.apta.org/, log in, and select My Profile. Next click on Email Management/GoGreen. Toward the bottom of the list, you will find the Publications options and may opt out of receiving the print JOSPT. Please save this preference.

Subscribers and members alike will continue to have access to JOSPT online and can retrieve current and archived issues anytime and anywhere you have Internet access.

APPENDIX

FIGURE 1. ACL-QoL mean scores stratified by KOOS symptoms subscale quartiles. Error bars represent standard deviations. Quartiles were determined according to the distribution of KOOS symptoms subscale scores for all participants. The ACL-QoL and KOOS symptoms subscale are scored from 0 (worst) to 100 (best). Abbreviations: ACL-QoL, Anterior Cruciate Ligament Quality of Life questionnaire; KOOS, Knee injury and Osteoarthritis Outcome Score; ROA, radiographic osteoarthritis.

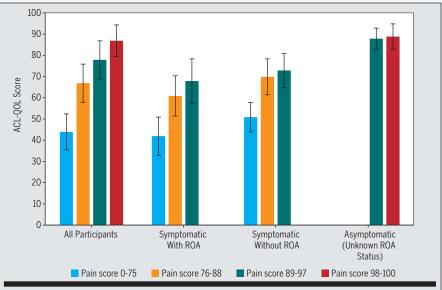


FIGURE 2. ACL-QoL mean scores stratified by KOOS pain subscale quartiles. Error bars represent standard deviations. Quartiles were determined according to the distribution of KOOS pain subscale scores for all participants. The ACL-QoL and KOOS pain subscale are scored from 0 (worst) to 100 (best). Abbreviations: ACL-QoL, Anterior Cruciate Ligament Quality of Life questionnaire; KOOS, Knee injury and Osteoarthritis Outcome Score; ROA, radiographic osteoarthritis.

MUSCULOSKELETAL IMAGING

FIGURE 1. Diagnostic ultrasound: long-axis view of the left medial elbow demonstrating a hypoechoic area (orange circle) along the undersurface (deep fibers) of the ulnar collateral ligament, concerning for partial-thickness tearing.

FIGURE 2. Fat-saturated, T2-weighted, coronal magnetic resonance image of the left elbow showing ulnar collateral ligament sprain/inflammation and reactive marrow edema (arrow) along the incompletely fused medial apophysis.

Refractory Ulnar Nerve Symptoms in an Adolescent Pitcher With Medial Apophysitis

AARON R. HELLEM, PT, DPT, OCS, SCS, CSCS, Mayo Clinic Sports Medicine, Mayo Clinic, Minneapolis, MN.

ELENA J. JELSING, MD, Mayo Clinic Sports Medicine, Mayo Clinic, Minneapolis, MN; Mayo Clinic College of Medicine, Rochester, MN.

WENDY J. HURD, PT, PhD, SCS, Mayo Clinic Sports Medicine, Mayo Clinic, Minneapolis, MN.

16-YEAR-OLD HIGH SCHOOL BASE-ball pitcher with a 3-week history of acute-onset pain in his medial elbow during throwing presented to physical therapy. The patient denied having symptoms of paresthesia. Examination revealed a 5° loss of elbow extension, normal grip strength, positive valgus stress test, and positive Tinel sign over the cubital tunnel. Physical therapy was initiated and the patient was referred for imaging, with suspicion of ulnar collateral ligament (UCL) injury.

Radiographs were noncontributory. Ultrasound imaging, however, was performed by a physiatrist and was suggestive of a partial-thickness tear of the UCL (**FIG-URE 1**) and ulnar nerve enlargement. The physiatrist ordered magnetic resonance imaging (MRI) to more accurately delin-

eate the potential extent of the UCL injury. The MRI confirmed a medial apophyseal stress reaction, commonly known as Little League elbow, a mild UCL sprain, and reactive ulnar nerve edema (FIGURE 2) (FIGURE 3, available at www.jospt.org). A physical therapy intervention designed to address medial elbow stability with ulnar nerve mobility and protection guidelines was prescribed. A return-to-throw program was also initiated. After 6 weeks, the patient resumed pitching from 18.3 m (60 ft) without pain, but experienced intermittent ulnar nerve paresthesia during activities of daily living. The patient was referred for repeat diagnostic ultrasound to assess for focal nerve entrapment, subluxating/dislocating ulnar nerve, and snapping triceps in the absence of functional elbow instability.

Follow-up ultrasound (FIGURE 4, available at www.jospt.org) revealed ulnar nerve enlargement at the medial epicondyle consistent with ulnar neuritis.² Iontophoresis with dexamethasone was added to the treatment plan to address nerve edema.¹

The patient's symptoms fully resolved after 5 treatments over 2 weeks, which included iontophoresis and exercise. Ulnar neuritis is difficult to diagnose solely on clinical grounds.² Continued neurogenic symptoms warranted further imaging. Diagnostic ultrasound is a cost-effective, dynamic, and valid approach to assess ulnar neuritis and supported an alteration in treatment and subsequent resolution of symptoms.² • J Orthop Sports Phys Ther 2018;48(5):419. doi:10.2519/jospt.2018.7359

Reference

- 1. Gökoğlu F, Fndkoğlu G, Yorgancoğlu ZR, Okumuş M, Ceceli E, Kocaoğlu S. Evaluation of iontophoresis and local corticosteroid injection in the treatment of carpal tunnel syndrome. Am J Phys Med Rehabil. 2005;84:92-96. https://doi.org/10.1097/01.PHM.0000151942.49031.DD
- Wiesler ER, Chloros GD, Cartwright MS, Shin HW, Walker FO. Ultrasound in the diagnosis of ulnar neuropathy at the cubital tunnel. J Hand Surg Am. 2006;31:1088-1093. https://doi.org/10.1016/j.jhsa.2006.06.007

LEIF P. MADSEN, ATC, PhD1 • EMILY A. HALL, ATC, PhD2 • CARRIE L. DOCHERTY, ATC, PhD1

Assessing Outcomes in People With Chronic Ankle Instability: The Ability of Functional Performance Tests to Measure Deficits in Physical Function and Perceived Instability

cute lateral ankle sprain has been documented as the most common musculoskeletal injury in physically active individuals,⁵⁰ with an incidence rate of 2.15 per 1000 person-years in the United States.⁴⁵ Research suggests that individuals who sustain an ankle sprain are more susceptible to reinjury, which can result in a cascade of long-term issues.³⁹ Chronic ankle instability (CAI) is a term used clinically to

- STUDY DESIGN: Laboratory-based, crosssectional study.
- BACKGROUND: Functional performance tests (FPTs) assess short bouts of unilateral hops for either distance or speed. More research is needed to identify specific FPTs that may be useful for measuring asymmetry outcomes related to functional performance and perceived instability deficits in individuals with chronic ankle instability (CAI).
- OBJECTIVES: To identify FPTs that are sensitive to subjective and objective deficits associated with CAI.
- **METHODS:** Twenty-four subjects with unilateral CAI (10 male, 14 female; mean \pm SD age, 20.7 \pm 3.0 years) and 24 healthy, matched controls (10 male, 14 female; age, 20.1 \pm 2.6 years) completed 5 unilateral FPTs in random order. Mean FPT scores and functional symmetry percentages were calculated and compared between groups using 2 separate 1-way multivariate analyses of variance (MANOVAs). Perceived instability symmetry

- percentages were compared between groups using a Mann-Whitney *U* analysis.
- **RESULTS:** There were no differences in the mean FPT scores (P>.05) or functional symmetry percentages (P>.05) between groups for any of the 5 FPTs. However, participants with CAI perceived greater instability when using their involved limb during the side hop (P = .02), 6-meter crossover hop (P = .003), lateral hop (P = .007), and figure-of-eight hop (P = .008).
- © CONCLUSION: There were no differences in mean functional scores between groups for all 5 FPTs, and each group performed symmetrically. Regardless, administering a visual analog scale following the completion of the side hop, 6-meter crossover hop, lateral hop, and figure-of-eight hop tests captures subjective reports of perceived instability in the involved limb that can be compared bilaterally throughout treatment. *J Orthop Sports Phys Ther* 2018;48(5):372-380. Epub 30 Mar 2018. doi:10.2519/jospt.2018.7514
- KEY WORDS: limb symmetry, outcomes, return to play

define patients who experience prolonged functional deficits and subjective reports of instability following an acute ankle sprain. Over time, patients with CAI can a reduction in physical activity, ded health-related quality of life, and

show a reduction in physical activity, decreased health-related quality of life, and increased risk of developing ankle osteoarthritis compared to healthy individuals.^{3,33}
Finding an effective means of minimizing the long-term sequelae of CAI

remains a paramount issue in the field of sports medicine. Recent efforts have been made to establish rehabilitation protocols specific to CAI patient populations to help prevent repetitive injury and diminish long-term deficits. 10,12,13,19,20,28,32,34,42,46,47 The ultimate goal in developing these rehabilitation programs is to reduce both subjective and objective deficits associated with CAI. Subjectively, individuals with CAI typically report ongoing symptoms of "giving way," or a temporary uncontrollable sensation of instability in the affected ankle.7,23,26 Objectively, patients with CAI experience a decrease in strength and range of motion, impaired functional performance, compromised proprioception, and poor neuromuscular control. 5,8,9,36,43

Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN. ²Department of Orthopaedics and Sports Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL. The study protocol was approved by the Indiana University Institutional Review Board for the Protection of Human Subjects. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Leif P. Madsen, 1025 East 7th Street, Bloomington, IN 47403. E-mail: lpmadsen@indiana.edu © Copyright ©2018 Journal of Orthopaedic & Sports Physical Therapy®

Although researchers and clinicians tend to agree on the target symptoms of CAI, there are large discrepancies between the outcome measures used to evaluate the success of rehabilitation programs. A detailed review of previous literature found 19 separate dependent variables that researchers have implemented to evaluate the success of the rehabilitation protocols. Such variables include laboratory-based measures (eg, center of pressure,20 time to stabilization,42 strength via an isokinetic dynamometer,28 electromyography amplitude¹²), clinical measures (eg, Balance Error Scoring System [BESS],19 Star Excursion Balance Test [SEBT], 19,20,34 strength via a handheld dynamometer10), and self-reported questionnaires with corresponding sport subscales (eg, Foot and Ankle Disability Index, 19,20,34 Foot and Ankle Ability Measure 13,32,47). While many of these dependent variables are used to measure improvements in balance and self-reported function, not a single outcome measure has been implemented to assess improvement in patients' perceived instability over the course of a rehabilitation protocol. This seems surprising, given that symptoms of perceived instability during functional activity are used to detect the presence of CAI in the first place.¹⁷ Perhaps previous studies have failed to report perceivedinstability outcomes because research has yet to identify an effective means of capturing such information in patients with CAI in a controlled environment.

Functional performance tests (FPTs) offer a potential opportunity to assess perceived instability. Traditionally, FPTs have been used to assess patients' ability to complete short bouts of single-leg hopping tasks for either distance or speed.²⁹ When the patient completes these hopping tests bilaterally, the results of each extremity can be compared to determine whether asymmetry exists between the injured and uninjured limbs.^{29,38} Over the past few years, CAI research appears to have moved away from implementing FPTs to measure CAI treatment outcomes,

due to inconsistent research findings. The majority of past research has found that single-limb hop tests lack sensitivity to detect lower extremity deficits in subjects with a history of ankle sprains, 8,36,49 while other studies found that individuals with CAI perform significantly worse on FPTs with the affected limb compared to the uninvolved limb and compared to healthy control subjects.5

Despite the conflicting evidence surrounding the validity of functional outcomes obtained from FPTs, functional tasks present an opportunity for clinicians and researchers to measure perceived instability. To our knowledge, only 2 studies have evaluated symptoms of instability in subjects with CAI using unilateral hop tests.4,5 These studies found that individuals with CAI who answered yes to the question, "Did you feel unstable during the test?" demonstrated worse performance on these tests than individuals with CAI who responded no.4,5 Unfortunately, asking a simple yes/no question following a particular hopping task provides little help for clinicians looking to monitor fluctuations in symptoms over the course of rehabilitation. Patient-reported outcome instruments, such as the visual analog scale (VAS), allow patients to rate their perceived instability on a scale from 0 to 100, which provides a visual aid of how a chosen intervention might have altered subjective symptoms over time.44 After performing the hop test on 1 limb, the patient can complete a VAS, and, similar to any functional outcome such as distance or speed, the perceived instability ratings can be compared bilaterally to determine whether asymmetry exists.

Surprisingly, there has been no research to identify specific FPTs that can detect asymmetries in both functional performance and perceived instability among individuals with CAI. The purpose of this study was to find FPTs that (1) can differentiate individuals with unilateral CAI from healthy control subjects based on functional performance outcomes, and (2) can accurately identify functional and perceived instability asymmetries in

subjects with unilateral CAI. Given the results from previous studies, we hypothesized that the involved limb of those with unilateral CAI would perform symmetrically with the uninvolved limb and would perform similarly to the dominant limb of healthy control subjects. However, despite the functional similarities, we hypothesized that the FPTs would identify asymmetries in perceived instability between the involved and uninvolved limbs of individuals with CAI, making FPTs a potential assessment technique for measuring improvements following rehabilitation interventions.

METHODS

Participants

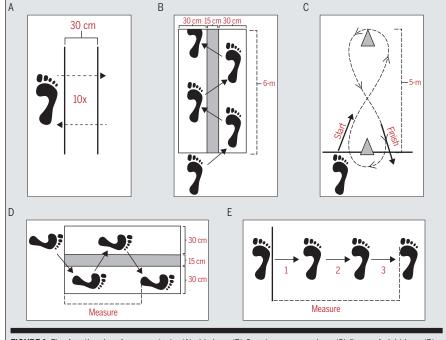
WENTY-FOUR HEALTHY CONTROL subjects (10 male, 14 female; mean \pm SD age, 20.1 \pm 2.6 years; height, 171.5 ± 9.2 cm; weight, 69.1 ± 12.0 kg) and 24 subjects with unilateral CAI (10 male, 14 female; age, 20.7 ± 3.0 years; height, 168.1 ± 8.0 cm; weight, 65.2 ± 11.2 kg) were recruited from a large Midwest university by posting advertisements around campus. The participants in the control group were matched to those with CAI according to sex, height (±10 cm), mass (± 10 kg), and limb length (± 8 cm). All subjects were physically active and participated in at least 120 minutes of exercise per week at moderate intensity. Subjects were included in the CAI group if (1) 1 limb scored an 11 or greater on the Identification of Functional Ankle Instability questionnaire, (2) the contralateral limb had no history of instability or giving way, and (3) the subject's last ankle sprain occurred more than 3 months prior to enrollment. Subjects were included in the control group if they had no history of ankle sprains or ankle instability. Subjects were excluded if they had a history of displaced fractures or lower extremity surgeries, a neuromuscular disease such as multiple sclerosis or Parkinson's disease, answered yes to 1 of the guestions on the Physical Activity Readiness Questionnaire, as recommended by the

American College of Sports Medicine,¹ or were unable to perform the functional tests. All procedures were approved by the university's Institutional Review Board for the Protection of Human Subjects. All participants consented prior to starting the study, and the rights of the subjects were protected.

Procedures

Functional Performance Subjects completed a 5-minute bike warm-up and additional stretching if needed, followed by 5 unilateral hopping tests (the FPTs). Three of the tests were completed for speed and measured in seconds (side hop, 6-meter crossover hop, figure-ofeight hop), while the other 2 tests were completed for distance and measured in centimeters (triple crossover hop and lateral hop). All subjects were allowed 1 to 4 practice trials before completing 3 successful trials for each FPT. If an error occurred, then the subject was notified and instructed to attempt the trial again. An error included losing balance, placing the contralateral limb down, hitting a line or a cone used to outline the FPT, or not landing on the test leg. The number of failed trials was recorded for each test. For the timed tests, an electronic timer (Speed Trap 2; Brower Timing Systems, Draper, UT) captured the data, while a standard tape measure captured the data for distance hopping tests. The order for each test and limb was counterbalanced at random for all participants.

Timed FPTs For the side hop test, subjects hopped on the test limb laterally over a 30-cm distance and back 10 times, as fast as possible (FIGURE 1A). For the 6-meter crossover hop, subjects hopped a distance of 6 m as quickly as possible, crossing diagonally over a 15-cm-wide line with each hop (FIGURE 1B). For the figure-of-eight hop test, subjects hopped in a figure-of-eight fashion around 2 cones placed 5 m apart, 2 consecutive times (FIGURE 1C). All timed FPTs were determined to have good to excellent reliability (intraclass correlation coefficient [ICC $_{2,1}$] = 0.84-0.96).⁵


Distance FPTs The triple crossover hop test for distance was performed using the same 15-cm-wide line that was used for the 6-meter crossover hop test; however, instead of crossing over the line for speed, the subjects hopped 3 times as far as possible, crossing the 15-cm-wide line with each hop (**FIGURE 1D**). For the lateral test for distance (**FIGURE 1E**), subjects hopped laterally 3 times as far as possible. All distance FPTs were determined to have excellent reliability (ICC_{2,1} = 0.93-0.96).^{31,41}

Perceived Ankle Instability Perceived ankle instability was measured using a 0-to-100 VAS. Subjects were asked, "How unstable did your ankle feel during the test?" Stability was defined as the ability to perform the FPT without feeling concern/fear of injury to the ankle. A higher value indicated more instability while performing the test. The VAS was completed following 3 successful trials for each FPT and limb.

Data Processing

First, mean functional performance scores were calculated for each FPT and limb, using scores from 3 successful trials. Second, symmetry values were calculated to assess (1) physical function symmetry and (2) perceived instability symmetry. The equations used to calculate symmetry values are described below.

Physical Function Symmetry Values Physical function symmetry values for each FPT were calculated using mean scores from 3 trials. We used the equation (nondominant limb/dominant limb) × 100 to calculate physical function symmetry for the control group. The definition of limb dominance was the leg the subject would use to kick a soccer ball. We used the equation (involved limb/uninvolved limb) × 100 to calculate physical function symmetry for the CAI group. For timed FPTs, a final symmetry value greater than 100% indicated that the involved or nondominant side performed worse, while a symmetry value less than 100% indicated that the involved or nondominant limb performed better. For distance FPTs, a final symmetry value greater than 100% indicated that the involved or nondominant side performed better, while a symmetry value less than 100% indicated

FIGURE 1. Five functional performance tests: (A) side hop, (B) 6-meter crossover hop, (C) figure-of-eight hop, (D) triple crossover hop, and (E) lateral hop.

that the involved or nondominant limb performed worse.

Perceived Instability Symmetry Values Using VAS instability scores, perceived instability symmetry values for each FPT were calculated as VAS nondominant limb – VAS dominant limb for the control group and VAS involved limb – VAS uninvolved limb for the CAI group. A score of zero reflected equal perceived instability between the limbs, a negative value indicated more instability in the uninvolved or dominant side, and a positive value indicated more instability in the nondominant or involved side.

Statistical Analysis

To estimate the appropriate sample size, we conducted a power analysis before the study. An alpha level of P = .05 was set a priori, and power was set at 80%. The effect size was estimated at 0.43, which was calculated based on previous VAS and functional performance literature.^{5,21} Results of a power analysis in G*Power (Version 3.0.10; Heinrich-Heine Universität, Düsseldorf, Germany) indicated that 23 participants per group would provide sufficient power.

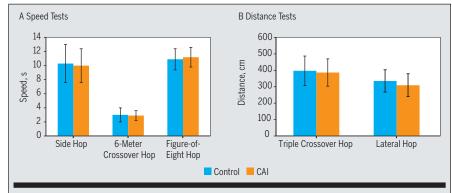
Functional Performance Two separate 1-way multivariate analyses of variance (MANOVAs) were completed to compare physical function between the CAI and control groups for all 5 FPTs. The first MANOVA was performed to identify statistical differences in mean performance scores between the dominant limb in the control group and the involved limb in the CAI group. The second MANOVA compared physical function symmetry values (percent) between the CAI group and the control group. Frequencies were also calculated for the number or failed trials while performing each test. Prior to performing the 2 MANOVAs, the physical function data were evaluated to ensure that all assumptions were met. First, we inspected box plots and found no evidence of univariate outliers, and there were no multivariate outliers in the data according to our calculated Mahalanobis distance

values (P>.001). Second, normality was confirmed, based on the results from Shapiro-Wilk tests (P>.05) and z scores calculated from skewness and kurtosis values (z score, ± 2.58). Third, an absence of multicollinearity was determined by performing Pearson correlations, which found that the dependent variables were moderately correlated but did not exceed 0.80. Fourth, there was a linear relationship between each FPT for both the CAI and control groups, as assessed by scatter plots. Finally, Box's M test of equality of covariance matrices indicated homogeneity of variance-covariance matrices for the performance scores (P = .045) and the functional symmetry percentages (P = .013).

Perceived Instability Visual analog scale instability symmetry values were not normally distributed and warranted a nonparametric statistical analysis. Therefore, 5 separate Mann-Whitney U tests were run to determine whether there were differences in perceived instability symmetry between the CAI group and control group. All statistical analyses were conducted using IBM SPSS Version 24 (IBM Corporation, Armonk, NY), and an a priori alpha level was set at P<.05.

RESULTS

N AVERAGE, BOTH HEALTHY AND CAI groups reported participating in 180 to 239 minutes of weekly exercise, at an average intensity of 6 on


a Likert scale of 0 to 10 (0 indicating "sedentary" and 10 indicating "very high intensity"). All subjects in the CAI group were right limb dominant, and only 2 of the healthy subjects were left limb dominant. The CAI group had an average Identification of Functional Ankle Instability questionnaire score of 17.9 \pm 4.5 for the involved limb. The involved limb was on the dominant side for 23 of the 24 subjects with CAI.

Functional Performance

The results of the first 1-way MANOVA found no significant difference in mean performance scores between the dominant limb of the control group and the involved limb of the CAI group (Wilks' $\lambda = .90$, $F_{5.42} = 0.93$, P = .48, partial $\eta^2 = 0.10$) (**FIGURE 2**). The results of the second 1-way MANOVA found no significant difference in physical function symmetry values between the control and CAI groups (Wilks' $\lambda = .81$, $F_{5.42} = 2.0$, P= .10, partial η^2 = 0.19). **TABLE 1** provides mean physical function symmetry values for each test and each group. TABLE 2 shows a frequency chart whereby subjects are grouped according to the limb that failed more times for each FPT.

Perceived Instability Symmetry

Our results found that the control group perceived ankle instability more symmetrically between the dominant and nondominant limbs compared to the CAI group. The CAI group perceived

FIGURE 2. Mean functional performance outcomes between the control group's dominant limb and the CAI group's involved limb for all 5 functional performance tests. Error bars represent standard deviation values. Abbreviation: CAI, chronic ankle instability.

more instability in the involved limb when completing the side hop ($U=177.0,\,z=-2.3,\,P=.02$), 6-meter crossover hop ($U=148.5,\,z=-2.9,\,P=.003$), lateral hop ($U=162.5,\,z=-2.7,\,P=.007$), and the figure-of-eight hop ($U=160.5,\,z=-2.7,\,P=.008$). However, there was no difference in perceived instability symmetry for the triple crossover hop between groups ($U=204.5,\,z=-1.8,\,P=.07$). TABLE 3 shows the median VAS symmetry values and interquartile ranges for each group and test.

DISCUSSION

UR RESULTS INDICATE THAT SUBjects with unilateral CAI perceive significantly more instability (according to higher VAS scores) in their involved limb when performing the side hop, 6-meter crossover hop, figure-of-eight hop, and lateral hop tests. When interpreted alone, the instability outcomes presented here may seem intuitive. One

might expect subjects with a history of giving way at the ankle to report instability when jumping and cutting on the involved limb. However, despite feeling unstable, our subjects with CAI produced similar physical function outcomes bilaterally and compared to healthy controls. These findings provide further justification that individuals with CAI may not experience functional deficits at all.8,36,48 Instead, the long-term deficits of CAI may stem from subjective reports of instability and giving way. Patients with CAI feel unstable, are in constant fear of reinjury, and thus refrain from regular physical activity, resulting in a decreased health-related quality of life.²⁷

While the cause of "feeling unstable" during functional activity remains speculative, researchers believe that sensorimotor control deficits contribute to symptoms of perceived instability. ^{24,30,37} Previous studies have found that subjects with CAI have diminished eversion force

sense,² altered motoneuron pool excitability,³⁵ delayed reaction time of peroneal muscles,¹⁵ and poor dynamic balance.¹⁸ These past results imply that clinicians should begin treating sensorimotor deficits following acute ankle sprains, but the only way to accurately measure improvements of the aforementioned outcomes is via laboratory equipment such as force plates, electromyographic recordings, and nerve stimulators. Unfortunately, clinicians rarely have access to such equipment, making it impossible to measure certain sensorimotor deficits in a clinical environment.

Some studies have evaluated the effectiveness of noninstrumented techniques, including the BESS¹¹ and SEBT,18,25 to identify deficits in static and dynamic postural control, respectively. These functional-assessment techniques are affordable to implement and have been shown to detect deficits in balance associated with poor sensorimotor control in subjects with CAI.11,18 However, the SEBT and BESS do not mimic functional activities often performed during sport participation. Clinicians may implement treatment strategies to improve SEBT outcomes only to discover that subjective reports of instability continue to persist during physical activity. We propose that implementing FPTs to measure ankle instability and functional performance simultaneously saves time for the clinician and provides a more meaningful outcome for evaluating symptoms of CAI during sport-specific movements.

Functional Outcomes Using FPTs

Return-to-play protocols often encourage the use of FPTs to determine when an athlete is ready to participate in competitive sports without restrictions. Functional performance test outcomes (distance hopped or time to completion) of the involved limb are often compared to those of the uninvolved limb to determine whether unilateral deficits persist. According to current guidelines, return to play following acute lower extremity injuries should be granted only if the pa-

TABLE 1 PHYSICAL FUNCTION SYMMETRY VALUES FOR 5 FUNCTIONAL PERFORMANCE TESTS

Test/Group	Symmetry Value*
Side hop [†]	
Control	93.0 ± 16.0 (87.3, 98.8)
CAI	$101.9 \pm 11.4 (96.1, 107.6)$
6-meter crossover hop [†]	
Control	99.7 ± 8.2 (96.2, 103.3)
CAI	$100.2 \pm 9.1 (96.6, 103.7)$
Figure-of-eight hop [†]	
Control	101.0 ± 4.6 (98.9, 103.1)
CAI	100.8 ± 5.5 (98.4, 102.6)
Triple crossover hop [‡]	
Control	$104.3 \pm 14.5 (99.5, 109.1)$
CAI	100.4 ± 8.0 (95.6, 105.2)
Lateral hop [‡]	
Control	99.7 ± 6.8 (96.5, 103.7)
CAI	99.2 ± 8.3 (96.1, 102.3)

Abbreviation: CAI, chronic ankle instability.

*Values are mean \pm SD percent (95% confidence interval). A mean symmetry value of 100% indicates that both limbs performed identically.

[†]Timed functional performance tests: a mean symmetry value greater than 100% indicates that the involved or nondominant limb performed worse. A mean symmetry value less than 100% indicates that the involved or nondominant limb performed better.

 $^{\circ}$ Distance functional performance tests: a mean symmetry value greater than 100% indicates that the involved or nondominant limb performed better. A mean symmetry value less than 100% indicates that the involved or nondominant limb performed worse.

tient reports no pain,⁴⁰ exhibits normal joint kinematics,²² and the performance of the injured limb during hopping tasks is at least 80% that of the healthy limb.^{6,16,29} However, these guidelines were established according to expert opinion alone. Our results highlight the potential risk of granting full return to sport even when athletes appear to be functionally symmetrical.

Depending on the FPT used, healthy people may appear to have asymmetrical limb performance, due to limb dominance or training habits that strengthen one side of the body. On average, the healthy control group completed the side hop test 7% faster using the nondominant limb and jumped 4% farther on the triple crossover hop using the nondominant limb. The CAI group displayed, at most, 2% asymmetry between limbs for all 5 FPTs. These side-by-side symmetry results raise questions about whether asymmetrical limb performance on any single hop test technique should be considered a standard return-to-play outcome. Perhaps the sensorimotor control deficits experienced by individuals with CAI cause more symmetrical physical function outcomes rather than obvious bilateral differences. Future research should obtain normative symmetry values from a variety of different physically active cohorts to determine normal physical function symmetry outcomes for each FPT. These normative values could then be used for comparison purposes during return-to-play decisions.

Instability Outcomes Using FPTs

To our knowledge, the present study is the first to implement a VAS to measure subjective reports of perceived instability following completion of FPTs. One previous study¹⁴ administered a VAS to subjects with CAI to evaluate how "difficult" the test was to complete. We consider the assessment of "difficulty" associated with the performance of a task to be subjective and to provide little insight to help evaluate the severity of instability symptoms or to monitor

TABLE 2

Frequency Chart Showing the Distribution of Failed Tests Between Limbs for the CAI and Control Subjects*

Test/Group	-4	-3	-2	-1	0	+1	+2	+3	+4
Figure-of-eight hop									
Control	0	0	0	0	24	0	0	0	0
CAI	0	0	0	2	21	1	0	0	0
Lateral hop									
Control	1	1	0	4	13	3	1	0	1
CAI	0	1	1	1	18	1	0	0	2
6-meter crossover hop									
Control	0	0	1	4	14	3	1	1	0
CAI	0	0	3	6	12	1	1	0	1
Triple crossover hop									
Control	1	0	2	4	12	3	0	1	1
CAI	0	1	3	5	9	4	2	0	0
Side hop									
Control	0	0	0	4	15	4	1	0	0
CAI	0	0	0	3	16	4	1	0	0

Abbreviation: CAI, chronic ankle instability.

*Values are n. Subjects in the O column failed an equal number of times bilaterally over the course of 3 trials. A negative value indicates that the subject failed that many times using the uninvolved or dominant side, while a positive value means that the subject failed that many times using the nondominant or involved side. According to this frequency chart, the majority of subjects failed an equal number of times bilaterally for all 5 functional performance tests.

TABLE 3

Instability Symmetry Values for 5 Functional Performance Tests

	Median VAS			
Test/Group	Symmetry Value*	Interquartile Range	Mann-Whitney U	P Value
Side hop			177.0	.020
Control	0.0	3.0		
CAI	15.5	34.0		
6-meter crossover hop			148.5	.003
Control	0.0	2.0		
CAI	10.0	28.0		
Figure-of-eight hop			160.5	.008
Control	0.0	3.0		
CAI	9.0	28.0		
Triple crossover hop			204.5	.077
Control	0.0	1.0		
CAI	4.5	30.0		
Lateral hop			162.5	.007
Control	0.0	0.0		
CAI	5.0	24.0		

Abbreviations: CAI, chronic ankle instability; VAS, visual analog scale.

*Any VAS instability score lower than zero indicates more instability for the uninvolved or dominant side, and scores greater than zero indicate more instability for the nondominant or involved side.

improvements in physical impairments. Using a VAS, we found that subjects with CAI reported significantly higher levels of instability in the involved limb, despite demonstrating similar functional outcomes bilaterally. This result highlights the consequence of neglecting patient-reported outcomes deciding when to return an athlete to competition. In the short term, athletes recovering from an acute ankle sprain injury may appear to have functionally symmetrical limb performance, but remain fearful of reinjury due to perceived instability, likely caused by an irregular and unpredictable motor error. Accordingly, FPTs may be used to safely exacerbate feelings of ankle instability in a clinical setting. Similar to performance measures, subjective reports of instability during functional activity can be compared bilaterally to identify the presence of sensorimotor deficits in the involved limb.

Among the 4 tests that produced significant instability asymmetry among subjects with CAI, the median difference in VAS scores between the involved and uninvolved limbs was relatively low. An important distinction of these results is that the VAS values presented in this paper represent a comparison between limbs. In many instances, the subjects with CAI reported feelings of instability in their uninvolved limb as well as their involved limb, which may indicate deficient motor control mechanisms occurring within the central nervous system rather than damaged peripheral mechanoreceptors of the injured limb alone.24 Repetitive injury to one limb alters the central processing of motor control and causes problems on both sides of the body.37

The triple crossover hop was the only test in which the CAI group did not perceive significantly higher feelings of instability in the involved limb. However, the triple crossover hop test caused the greatest number of subjects with CAI to report feelings of instability bilaterally. More specifically,

17 of the 24 subjects with CAI reported some level of instability when using the uninvolved limb to complete the triple crossover hop. While the triple crossover hop test caused feelings of instability in the subjects with CAI, the symmetry values were not significant, due to possible sensorimotor deficits occurring bilaterally. Given these results, we recommend that clinicians take into account feelings of instability in both limbs and apply interventions bilaterally to address these deficits.

Limitations

This study had limitations. First, some subjects might have suffered from fatigue during the functional assessment because the tests were performed in a single testing session. To avoid fatigue, we implemented strategies consistent with previous FPT research, 5,9,48 such as requiring a mandatory 30-second rest between trials, encouraging participants to take as many breaks as needed, and counterbalancing the order of the tests. Second, the psychometric properties of the VAS assessment have yet to be established for measuring perceived instability at the ankle. Future research should evaluate the reliability and responsiveness of the VAS as clinicians monitor perceived instability over the course of rehabilitation. Third, our study did not discriminate against the type of physical activity frequently performed by both control subjects and those with CAI. Future research would do well to match the control and CAI groups according to whether the subjects frequently participate in proprioceptive exercises that may mimic the skills required to complete the FPTs.

CONCLUSION

UR RESULTS INDICATE THAT SUBjects with CAI experience significant feelings of instability when performing unilateral hopping tests, even if the involved limb appears functionally

normal. This finding is of considerable importance for clinicians who treat patients with a history of recurrent ankle sprains. Determining the success of rehabilitation protocols by evaluating functional improvements alone may prove insufficient. Instead, clinicians should consider implementing a VAS upon completion of the side hop, 6-meter crossover hop, figure-of-eight hop, and lateral hop tests to determine whether symptoms of perceived instability persist. In doing so, specific interventions aimed at improving subjective reports of instability can be prescribed in a timely manner in an effort to prevent chronic deficits at the ankle. •

KEY POINTS

FINDINGS: Participants with unilateral chronic ankle instability experienced greater feelings of instability in the involved limb while performing unilateral hopping tests, despite the lack of functional deficits.

IMPLICATIONS: Clinicians should consider administering a visual analog scale following functional performance testing to measure perceptions of instability in patients with a history of ankle sprains.

CAUTION: Results should be interpreted with caution due to the lack of generalizability of our patient population.

REFERENCES

- American College of Sports Medicine. ACSM's Guidelines for Exercise Testing and Prescription.
 9th ed. Baltimore, MD: Wolters Kluwer Health; 2014.
- Arnold BL, Docherty CL. Low-load eversion force sense, self-reported ankle instability, and frequency of giving way. J Athl Train. 2006;41:233-238.
- **3.** Beynnon BD, Vacek PM, Murphy D, Alosa D, Paller D. First-time inversion ankle ligament trauma: the effects of sex, level of competition, and sport on the incidence of injury. *Am J Sports Med*. 2005;33:1485-1491. https://doi.org/10.1177/0363546505275490
- 4. Buchanan AS, Docherty CL, Schrader J. Functional performance testing in participants with functional ankle instability and in a healthy

- control group. *J Athl Train*. 2008;43:342-346. https://doi.org/10.4085/1062-6050-43.4.342
- Caffrey E, Docherty CL, Schrader J, Klossner J. The ability of 4 single-limb hopping tests to detect functional performance deficits in individuals with functional ankle instability. J Orthop Sports Phys Ther. 2009;39:799-806. https://doi.org/10.2519/jospt.2009.3042
- 6. Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO. Return-to-play in sport: a decision-based model. Clin J Sport Med. 2010;20:379-385. https://doi.org/10.1097/ JSM.0b013e3181f3c0fe
- Delahunt E, Coughlan GF, Caulfield B, Nightingale EJ, Lin CW, Hiller CE. Inclusion criteria when investigating insufficiencies in chronic ankle instability. Med Sci Sports Exerc. 2010;42:2106-2121. https://doi.org/10.1249/ MSS.0b013e3181de7a8a
- **8.** Demeritt KM, Shultz SJ, Docherty CL, Gansneder BM, Perrin DH. Chronic ankle instability does not affect lower extremity functional performance. *J Athl Train*. 2002;37:507-511.
- Docherty CL, Arnold BL, Gansneder BM, Hurwitz S, Gieck J. Functional-performance deficits in volunteers with functional ankle instability. J Athl Train. 2005;40:30-34.
- Docherty CL, Moore JH, Arnold BL. Effects of strength training on strength development and joint position sense in functionally unstable ankles. J Athl Train. 1998;33:310-314.
- Docherty CL, Valovich McLeod TC, Shultz SJ.
 Postural control deficits in participants with
 functional ankle instability as measured by the
 Balance Error Scoring System. Clin J Sport Med.
 2006;16:203-208.
- 12. Donovan L, Hart JM, Saliba S, et al. Effects of ankle destabilisation devices in rehabilitation on gait biomechanics in chronic ankle instability patients: a randomised controlled trial [abstract]. Br J Sports Med. 2015;49:A3. https://doi. org/10.1136/bjsports-2015-095573.7
- **13.** Donovan L, Hart JM, Saliba SA, et al. Rehabilitation for chronic ankle instability with or without destabilization devices: a randomized controlled trial. *J Athl Train*. 2016;51:233-251. https://doi.org/10.4085/1062-6050-51.3.09
- 14. Eechaute C, Vaes P, Duquet W. Functional performance deficits in patients with CAI: validity of the multiple hop test. Clin J Sport Med. 2008;18:124-129. https://doi.org/10.1097/ JSM.0b013e31816148d2
- **15.** Fernandes N, Allison GT, Hopper D. Peroneal latency in normal and injured ankles at varying angles of perturbation. *Clin Orthop Relat Res.* 2000:193-201.
- 16. Gerber JP, Williams GN, Scoville CR, Arciero RA, Taylor DC. Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int. 1998;19:653-660. https://doi. org/10.1177/107110079801901002
- **17.** Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle

- instability in controlled research: a position statement of the International Ankle Consortium. *Br J Sports Med.* 2014;48:1014-1018. https://doi.org/10.1136/bjsports-2013-093175
- Gribble PA, Hertel J, Denegar CR, Buckley WE.
 The effects of fatigue and chronic ankle instability on dynamic postural control. J Athl Train. 2004;39:321-329.
- Hale SA, Fergus A, Axmacher R, Kiser K. Bilateral improvements in lower extremity function after unilateral balance training in individuals with chronic ankle instability. *J Athl Train*. 2014;49:181-191. https://doi.org/10.4085/1062-6050-49.2.06
- 20. Hale SA, Hertel J, Olmsted-Kramer LC. The effect of a 4-week comprehensive rehabilitation program on postural control and lower extremity function in individuals with chronic ankle instability. *J Orthop Sports Phys Ther*. 2007;37:303-311. https://doi.org/10.2519/jospt.2007.2322
- Hall EA, Docherty CL, Simon J, Kingma JJ, Klossner JC. Strength-training protocols to improve deficits in participants with chronic ankle instability: a randomized controlled trial. J Athl Train. 2015;50:36-44. https://doi. org/10.4085/1062-6050-49.3.71
- 22. Herring SA, Kibler WB, Putukian M. The team physician and the return-to-play decision: a consensus statement—2012 update. Med Sci Sports Exerc. 2012;44:2446-2448. https://doi. org/10.1249/MSS.0b013e3182750534
- Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37:364-375.
- Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27:353-370. https://doi.org/10.1016/j. csm.2008.03.006
- 25. Hertel J, Braham RA, Hale SA, Olmsted-Kramer LC. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phys Ther. 2006;36:131-137. https://doi.org/10.2519/jospt.2006.36.3.131
- Hiller CE, Kilbreath SL, Refshauge KM. Chronic ankle instability: evolution of the model. *J Athl Train*. 2011;46:133-141. https://doi. org/10.4085/1062-6050-46.2.133
- 27. Houston MN, Van Lunen BL, Hoch MC. Healthrelated quality of life in individuals with chronic ankle instability. J Athl Train. 2014;49:758-763. https://doi.org/10.4085/1062-6050-49.3.54
- 28. Kaminski TW, Buckley BD, Powers ME, Hubbard TJ, Ortiz C. Effect of strength and proprioception training on eversion to inversion strength ratios in subjects with unilateral functional ankle instability. Br J Sports Med. 2003;37:410-415. https://doi.org/10.1136/bjsm.37.5.410
- 29. Kaminski TW, Hertel J, Amendola N, et al. National Athletic Trainers' Association position statement: conservative management and prevention of ankle sprains in athletes. J Athl Train. 2013;48:528-545. https://doi. org/10.4085/1062-6050-48.4.02

- Kirby JL, Houston MN, Gabriner ML, Hoch MC. Relationships between mechanical joint stability and somatosensory function in individuals with chronic ankle instability. Foot (Edinb). 2016;28:1-6. https://doi.org/10.1016/j.foot.2016.04.001
- 31. Kivlan BR, Carcia CR, Clemente FR, Phelps AL, Martin RL. Reliability and validity of functional performance tests in dancers with hip dysfunction. *Int J Sports Phys Ther*. 2013:8:360-369.
- 32. Kosik K, Treada M, McCann R, Boland S, Gribble PA. Comparison of two rehabilitation protocols on patient- and disease-oriented outcomes in individuals with chronic ankle instability. *Int J Athl Ther Train*. 2017;22:57-65. https://doi.org/10.1123/ijatt.2016-0054
- 33. McKeon PO, Hubbard TJ, Wikstrom EA. Consequences of ankle inversion trauma: a novel recognition and treatment paradigm. In: Zaslav KR, ed. An International Perspective on Topics in Sports Medicine and Sports Injury. London, UK: InTechOpen; 2012:457-480.
- McKeon PO, Ingersoll CD, Kerrigan DC, Saliba E, Bennett BC, Hertel J. Balance training improves function and postural control in those with chronic ankle instability. Med Sci Sports Exerc. 2008;40:1810-1819. https://doi.org/10.1249/ MSS.0b013e31817e0f92
- 35. McVey ED, Palmieri RM, Docherty CL, Zinder SM, Ingersoll CD. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot Ankle Int. 2005;26:1055-1061. https://doi. org/10.1177/107110070502601210
- Munn J, Beard D, Refshauge K, Lee RJ. Do functional-performance tests detect impairment in subjects with ankle instability? J Sport Rehabil. 2002;11:40-50. https://doi.org/10.1123/jsr.11.1.40
- 37. Munn J, Sullivan SJ, Schneiders AG. Evidence of sensorimotor deficits in functional ankle instability: a systematic review with metaanalysis. J Sci Med Sport. 2010;13:2-12. https:// doi.org/10.1016/j.jsams.2009.03.004
- **38.** Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. *Br J Sports Med*. 2005;39:127-131. https://doi.org/10.1136/bjsm.2004.010900
- O'Connor SR, Bleakley CM, Tully MA, McDonough SM. Predicting functional recovery after acute ankle sprain. PLoS One. 2013;8:e72124. https:// doi.org/10.1371/journal.pone.0072124
- Roi GS. Return to competition following athletic injury: sports rehabilitation as a whole. *Apunts*. 2010;45:181-184. https://doi.org/10.1016/j. apunts.2010.01.003
- **41.** Ross MD, Langford B, Whelan PJ. Test-retest reliability of 4 single-leg horizontal hop tests. *J Strength Cond Res*. 2002;16:617-622.
- 42. Ross SE, Guskiewicz KM. Effect of coordination training with and without stochastic resonance stimulation on dynamic postural stability of subjects with functional ankle instability and subjects with stable ankles. Clin J Sport Med. 2006;16:323-328.

- 43. Sekir U, Yildiz Y, Hazneci B, Ors F, Saka T, Aydin T. Reliability of a functional test battery evaluating functionality, proprioception, and strength in recreational athletes with functional ankle instability. Eur J Phys Rehabil Med. 2008;44:407-415.
- 44. Valier AR, Jennings AL, Parsons JT, Vela LI. Benefits of and barriers to using patientrated outcome measures in athletic training. J Athl Train. 2014;49:674-683. https://doi. org/10.4085/1062-6050-49.3.15
- Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ, Jr. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92:2279-2284. https://doi.org/10.2106/

- JBJS.I.01537
- Webster KA, Gribble PA. Functional rehabilitation interventions for chronic ankle instability: a systematic review. J Sport Rehabil. 2010;19:98-114. https://doi.org/10.1123/jsr.19.1.98
- 47. Wikstrom EA, McKeon PO. Predicting manual therapy treatment success in patients with chronic ankle instability: improving self-reported function. J Athl Train. 2017;52:325-331. https:// doi.org/10.4085/1062-6050-52.2.07
- **48.** Wikstrom EA, Tillman MD, Chmielewski TL, Cauraugh JH, Naugle KE, Borsa PA. Selfassessed disability and functional performance in individuals with and without ankle instability: a case control study. *J Orthop Sports Phys Ther.*

- 2009;39:458-467. https://doi.org/10.2519/ jospt.2009.2989
- Worrell TW, Booher LD, Hench KM. Closed kinetic chain assessment following inversion ankle sprain. J Sport Rehabil. 1994;3:197-203. https:// doi.org/10.1123/jsr.3.3.197
- **50.** Yeung MS, Chan KM, So CH, Yuan WY. An epidemiological survey on ankle sprain. *Br J Sports Med*. 1994;28:112-116. https://doi.org/10.1136/bjsm.28.2.112

EARN CEUs With JOSPT's Read for Credit Program

JOSPT's **Read for Credit (RFC)** program invites readers to study and analyze selected *JOSPT* articles and successfully complete online exams about them for continuing education credit. To participate in the program:

- 1. Go to www.jospt.org and click on Read for Credit in the top blue navigation bar that runs throughout the site.
- 2. Log in to read and study an article and to pay for the exam by credit card.
- When ready, click Take Exam to answer the exam questions for that article.
- 4. Evaluate the RFC experience and receive a personalized certificate of continuing education credits.

The RFC program offers you 2 opportunities to pass the exam. You may review all of your answers—including your answers to the questions you missed. You receive **0.2 CEUs**, or 2 contact hours, for each exam passed.

JOSPT's website maintains a history of the exams you have taken and the credits and certificates you have been awarded in **My CEUs** and **Your Exam Activity**, located in the right rail of the Read for Credit page listing available exams.

CLINICAL PRACTICE GUIDELINES

ROBROY L. MARTIN, PT, PhD • RUTH CHIMENTI, DPT, PhD • TYLER CUDDEFORD, PT, PhD • JEFF HOUCK, PT, PhD

J.W. MATHESON, DPT • CHRISTINE M. MCDONOUGH, PT, PhD • STEPHEN PAULSETH, DPT, MS

DANE K. WUKICH. MD • CHRISTOPHER R. CARCIA. PT. PhD

Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy Revision 2018

Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability and Health From the Orthopaedic Section of the American Physical Therapy Association

J Orthop Sports Phys Ther. 2018;48(5):A1-A38. doi:10.2519/jospt.2018.0302

SUMMARY OF RECOMMENDATIONS	A2
INTRODUCTION	A3
METHODS	A4
CLINICAL GUIDELINES: Impairment/Function-Based Diagnosis	A7
CLINICAL GUIDELINES: Examination	A14
CLINICAL GUIDELINES: Interventions	A15
AUTHOR/REVIEWER AFFILIATIONS AND CONTACTS	A20
REFERENCES	A21

REVIEWERS: Paul Beattie, PT, PhD • Yu-Jen Chang, PhD • John DeWitt, DPT • Amanda Ferland, DPT Sandra Kaplan, PT, PhD • David Killoran, PhD • Leslie Torburn, DPT

For author, coordinator, contributor, and reviewer affiliations, see end of text. ©2018 Orthopaedic Section, American Physical Therapy Association (APTA), Inc, and the Journal of Orthopaedic & Sports Physical Therapy. The Orthopaedic Section, APTA, Inc, and the Journal of Orthopaedic & Sports Physical Therapy consent to the reproduction and distribution of this guideline for educational purposes. Address correspondence to Brenda Johnson, ICF-Based Clinical Practice Guidelines Coordinator, Orthopaedic Section, APTA, Inc, 2920 East Avenue South, Suite 200, La Crosse, WI 54601. E-mail: icf@orthopt.org

MIDPORTION ACHILLES TENDINOPATHY: CLINICAL PRACTICE GUIDELINES REVISION 2018

Summary of Recommendations*

DIAGNOSIS/CLASSIFICATION

In addition to the arc sign and Royal London Hospital test, clinicians can use a subjective report of pain located 2 to 6 cm proximal to the Achilles tendon insertion that began gradually and pain with palpation of the midportion of the tendon to diagnose midportion Achilles tendinopathy.

EXAMINATION – OUTCOME MEASURES: ACTIVITY LIMITATIONS/ SELF-REPORTED MEASURES

Clinicians should use the Victorian Institute of Sport Assessment-Achilles (VISA-A) to assess pain and stiffness, and either the Foot and Ankle Ability Measure (FAAM) or the Lower Extremity Functional Scale (LEFS) to assess activity and participation in patients with a diagnosis of midportion Achilles tendinopathy.

EXAMINATION – ACTIVITY LIMITATIONS/PHYSICAL PERFORMANCE MEASURES

B Clinicians should use physical performance measures, including hop and heel-raise endurance tests, as appropriate, to assess a patient's functional status and document findings.

EXAMINATION - PHYSICAL IMPAIRMENT MEASURES

B When evaluating physical impairment over an episode of care for those with Achilles tendinopathy, one should measure ankle dorsiflexion range of motion, subtalar joint range of motion, plantar flexion strength and endurance, static arch height, forefoot alignment, and pain with palpation.

INTERVENTIONS - EXERCISE

Clinicians should use mechanical loading, which can be either in the form of eccentric exercise, or a heavy-load, slow-speed (concentric/eccentric) exercise program, to decrease pain and improve function for patients with midportion Achilles tendinopathy without presumed frailty of the tendon structure.

Patients should exercise at least twice weekly within their pain tolerance.

INTERVENTIONS - STRETCHING

Clinicians may use stretching of the ankle plantar flexors with the knee flexed and extended to reduce pain and improve satisfaction with outcome in patients with midportion Achilles tendinopathy who exhibit limited ankle dorsiflexion range of motion.

INTERVENTIONS - NEUROMUSCULAR RE-EDUCATION

Clinicians may use neuromuscular exercises targeting lower extremity impairments that may lead to abnormal kinetics and/or kinematics, specifically eccentric overload of the Achilles tendon during weight-bearing activities.

INTERVENTIONS - MANUAL THERAPY

Clinicians may consider using joint mobilization to improve mobility and function and soft tissue mobilization to increase range of motion for patients with midportion Achilles tendinopathy.

INTERVENTIONS - PATIENT EDUCATION: ACTIVITY MODIFICATION

B For patients with nonacute midportion Achilles tendinopathy, clinicians should advise that complete rest is not indicated and that they should continue with their recreational activity within their pain tolerance while participating in rehabilitation.

INTERVENTIONS - PATIENT COUNSELING

Clinicians may counsel patients with midportion Achilles tendinopathy. Key elements of patient counseling could include (1) theories supporting use of physical therapy and role of mechanical loading, (2) modifiable risk factors, including body mass index and shoewear, and (3) typical time course for recovery from symptoms.

INTERVENTIONS - HEEL LIFTS

Because contradictory evidence exists, no recommendation can be made for the use of heel lifts in patients with midportion Achilles tendinopathy.

INTERVENTIONS - NIGHT SPLINTS

Clinicians should not use night splints to improve symptoms in patients with midportion Achilles tendinopathy.

INTERVENTIONS - ORTHOSES

Because contradictory evidence exists, no recommendation can be made for the use of orthoses in patients with midportion Achilles tendinopathy.

INTERVENTIONS - TAPING

Clinicians should not use therapeutic elastic tape to reduce pain or improve functional performance in patients with midportion Achilles tendinopathy.

Clinicians may use rigid taping to decrease strain on the Achilles tendon and/or alter foot posture in patients with midportion Achilles tendinopathy.

INTERVENTIONS - LOW-LEVEL LASER THERAPY

Because contradictory evidence exists, no recommendation can be made for the use of low-level laser therapy in patients with midportion Achilles tendinopathy.

INTERVENTIONS - IONTOPHORESIS

B Clinicians should use iontophoresis with dexamethasone to decrease pain and improve function in patients with acute midportion Achilles tendinopathy.

INTERVENTIONS - DRY NEEDLING

Clinicians may use combined therapy of dry needling with injection under ultrasound guidance and eccentric exercise to decrease pain for individuals with symptoms greater than 3 months and increased tendon thickness.

^{*}These recommendations and clinical practice guidelines are based on the scientific literature published prior to November 2017.

List of Abbreviations

APTA: American Physical Therapy Association

BMI: body mass index **CI:** confidence interval

CPG: clinical practice guideline

DECT: dual-energy computed tomography **ESWT:** extracorporeal shockwave therapy **FAAM:** Foot and Ankle Ability Measure **HVIGI:** high-volume image-guided injection **ICD:** International Classification of Diseases

ICF: International Classification of Functioning, Disability

and Health

JOSPT: Journal of Orthopaedic & Sports Physical Therapy

LEFS: Lower Extremity Functional Scale

LLLT: low-level laser therapy

LOINC: Logical Observation Identifiers Names

and Codes

MRI: magnetic resonance imaging mRNA: messenger ribonucleic acid

MSU: monosodium urate

NPRS: numeric pain-rating scale

PRP: platelet-rich plasma

US: ultrasound

VAS: visual analog scale

VISA-A: Victorian Institute of Sport Assessment-Achilles

Introduction

AIM OF THE GUIDELINES

The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based clinical practice guidelines (CPGs) for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization's International Classification of Functioning, Disability and Health (ICF).

The purposes of these clinical guidelines are to:

- Describe evidence-based physical therapy practice, including diagnosis, prognosis, intervention, and assessment of outcome for musculoskeletal disorders commonly managed by orthopaedic physical therapists
- Classify and define common musculoskeletal conditions using the World Health Organization's terminology related to impairments of body function and body structure, activity limitations, and participation restrictions
- Identify interventions supported by current best evidence to address impairments of body function and structure, activity limitations, and participation restrictions associated with common musculoskeletal conditions
- Identify appropriate outcome measures to assess changes resulting from physical therapy interventions in body function and structure as well as in activity and participation of the individual
- Provide a description to policy makers, using internationally accepted terminology, of the practice of orthopaedic physical therapists

- Provide information for payers and claims reviewers regarding the practice of orthopaedic physical therapy for common musculoskeletal conditions
- Create a reference publication for orthopaedic physical therapy clinicians, academic instructors, clinical instructors, students, interns, residents, and fellows regarding the best current practice of orthopaedic physical therapy

STATEMENT OF INTENT

These guidelines are not intended to be construed or to serve as a standard of medical care. Standards of care are determined on the basis of all clinical data available for an individual patient and are subject to change as scientific knowledge and technology advance and patterns of care evolve. These parameters of practice should be considered guidelines only. Adherence to them will not ensure a successful outcome in every patient, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgment regarding a particular clinical procedure or treatment plan must be made based on clinician experience and expertise in light of the clinical presentation of the patient, the available evidence, available diagnostic and treatment options, and the patient's values, expectations, and preferences. However, we suggest that significant departures from accepted guidelines should be documented in the patient's medical records at the time the relevant clinical decision is made.

Methods

Content experts with relevant physical therapy, medical, and surgical expertise were appointed by the Orthopaedic Section, APTA to conduct a review of the literature and to develop an updated Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy CPG as indicated by the current state of the evidence in the field. The aims of the revision were to provide a concise summary of the evidence since publication of the original guideline and to develop new recommendations or revise previously published recommendations to support evidence-based practice. The authors of this guideline revision worked with the CPG Editors and medical librarians for methodological guidance. The research librarians were chosen for their expertise in systematic review and rehabilitation literature search and to perform systematic searches for concepts associated with classification, examination, and intervention strategies for Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy.²² Briefly, the following databases were searched from 2009 to November 2017: MEDLINE, CINAHL, Cochrane Library, and PEDro (see APPENDIX A for full search strategies and APPENDIX B for search dates and results, available at www.orthopt.org).

The authors declared relationships and developed a conflict management plan, which included submitting a Conflict of Interest form to the Orthopaedic Section, APTA, Inc. Articles that were authored by a reviewer were assigned to an alternate reviewer. Funding was provided to the CPG development team for travel and expenses for CPG development training by the Orthopaedic Section, APTA, Inc. The CPG development team maintained editorial independence.

Articles contributing to recommendations were reviewed based on specified inclusion and exclusion criteria with the goal of identifying evidence relevant to physical therapist clinical decision making for adults with Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy. The title and abstract of each article were reviewed independently by 2 members of the CPG development team for inclusion (see APPENDIX C for inclusion and exclusion criteria, available at www.orthopt.org). Full-text review was then similarly conducted to obtain the final set of articles for contribution to recommendations. The team leader (R.L.M.) provided the final decision for discrepancies that were not resolved by the review team (see APPENDIX D for flow chart of articles and APPENDIX E for articles included in recommendations by topic, available at www.orthopt.org). For selected relevant topics that were not appropriate for the development of recommendations, such as incidence and imaging, articles were not subject to a systematic review process and were not included in the flow chart. Evidence tables for this CPG are available on the Clinical Practice Guidelines page of the Orthopaedic Section of the APTA website: www.orthopt.org.

This guideline was issued in 2018 based on the published literature up through November 2017. This guideline will be considered for review in 2022, or sooner if new evidence becomes available. Any updates to the guideline in the interim period will be noted on the Orthopaedic Section of the APTA website: www.orthopt.org.

LEVELS OF EVIDENCE

Individual clinical research articles were graded according to criteria adapted from the Centre for Evidence-Based Medicine, Oxford, United Kingdom for diagnostic, prospective, and therapeutic studies.149 In teams of 2, each reviewer independently assigned a level of evidence and evaluated the quality of each article using a critical appraisal tool (see APPENDICES F and G for Levels of Evidence table and details on procedures used for assigning levels of evidence, available at www.orthopt.org). The evidence update was organized from highest level of evidence to lowest level. An abbreviated version of the grading system is provided below.

- Evidence obtained from systematic reviews, high-quality diagnostic studies, prospective studies, or randomized controlled trials
- Evidence obtained from systematic reviews, lesser-quality diagnostic studies, prospective studies, or randomized controlled trials (eg, weaker diagnostic criteria and reference standards, improper randomization, no blinding, less than 80% follow-up)
- Case-control studies or retrospective studies
- Case series
- Expert opinion

GRADES OF EVIDENCE

The strength of the evidence supporting the recommendations was graded according to the previously established methods for the original guideline and those provided below. Each team developed recommendations based on the strength of evidence, including how directly the studies addressed the question of Achilles Pain, Stiffness, and Muscle Power Deficits: Midportion Achilles Tendinopathy. In developing their recommendations, the authors considered the strengths and limitations of the body of evidence and the health benefits, side effects, and risks of tests and interventions.

Methods (continued)

CDA	ADES OF RECOMMENDATION	STRENGTH OF EVIDENCE
GRA		
A	Strong evidence	A preponderance of level I and/or level II studies support the recommendation. This must include at least 1 level I study
В	Moderate evidence	A single high-quality randomized controlled trial or a preponderance of level II studies support the recommendation
C	Weak evidence	A single level II study or a preponderance of level III and IV studies, including statements of consensus by content experts, support the recommendation
D	Conflicting evidence	Higher-quality studies conducted on this topic disagree with respect to their conclusions. The recommendation is based on these conflicting studies
Е	Theoretical/ foundational evidence	A preponderance of evidence from animal or cadaver studies, from conceptual models/ principles, or from basic science/bench research support this conclusion
F	Expert opinion	Best practice based on the clinical experience of the guidelines development team

GUIDELINE REVIEW PROCESS AND VALIDATION

Identified reviewers who are experts in Achilles tendinopathy management and rehabilitation reviewed the CPG draft for integrity, accuracy, and to ensure that it fully represented the current evidence for the condition. The guideline draft was also posted for public comment and review

on www.orthopt.org, and a notification of this posting was sent to the members of the Orthopaedic Section, APTA, Inc. In addition, a panel of consumer/patient representatives and external stakeholders, such as claims reviewers, medical coding experts, academic educators, clinical educators, physician specialists, and researchers, also reviewed the guideline. All comments, suggestions, and feedback from the expert reviewers, public, and consumer/patient representatives were provided to the authors and editors for consideration and revisions. Guideline development methods, policies, and implementation processes are reviewed at least yearly by the Orthopaedic Section, APTA's ICF-Based Clinical Practice Guideline Advisory Panel, including consumer/patient representatives, external stakeholders, and experts in physical therapy practice guideline methodology.

DISSEMINATION AND IMPLEMENTATION TOOLS

In addition to publishing these guidelines in the *Journal of Orthopaedic & Sports Physical Therapy (JOSPT)*, these guidelines will be posted on CPG areas of both the JOSPT and the Orthopaedic Section, APTA websites, which are free-access website areas, and submitted to be available free access on the Agency for Healthcare Research and Quality's website (www.guideline.gov). The implementation tools planned to be available for patients, clinicians, educators, payers, policy makers, and researchers, and the associated implementation strategies, are listed in TABLE 1.

TABLE 1 Planned Strategies and Tools to Support the Dissemination and Implementation of This Clinical Practice Guideline					
Tool	Strategy				
"Perspectives for Patients"	Patient-oriented guideline summary available on www.jospt.org and www.orthopt.org				
Mobile app of guideline-based exercises for patients/clients and health care practitioners	Marketing and distribution of app using www.orthopt.org				
Clinician's quick-reference guide	Summary of guideline recommendations available on www.orthopt.org				
Read-for-credit continuing education units	Continuing education units available for physical therapists and athletic trainers through JOSPT				
Educational webinars for health care practitioners	Guideline-based instruction available for practitioners on www.orthopt.org				
Mobile and web-based app of guideline for training of health care practitioners	Marketing and distribution of app using www.orthopt.org				
Physical Therapy National Outcomes Data Registry	Support the ongoing usage of data registry for common musculoskeletal conditions of the foot and ankle region				
Logical Observation Identifiers Names and Codes mapping	Publication of minimal data sets and their corresponding Logical Observation Identifiers Names and Codes for the foot and ankle region on www.orthopt.org				
Non-English versions of the guidelines and guideline implementation tools	Development and distribution of translated guidelines and tools to <i>JOSPT</i> 's international partners and global audience via www.jospt.org				

Methods (continued)

CLASSIFICATION

The terminology used to describe Achilles tendon disorders varies, with "tendinitis," "tendonitis," or "paratenonitis" commonly being used and therefore suggestive of an inflammatory condition. Because inflammation and degeneration are usually not mutually exclusive, 99,111,119,150,152 "midportion Achilles tendinopathy" will be the focus of this clinical guideline unless otherwise stated.

The International Classification of Diseases (ICD-10) code associated with Achilles tendinopathy is M76.6 Achilles tendinitis/Achilles bursitis. The corresponding primary ICD-9-CM code, commonly used in the United States, is 726.71 Achilles bursitis or tendinitis.

The primary ICF body function codes associated with Achilles tendinopathy are b28015 Pain in lower limb, b7300 Power of isolated muscles and muscle groups, and b7800 Sensation of muscle stiffness.

The primary ICF body structures codes associated with Achilles tendinopathy are **\$75012 Muscles of lower leg** and s75028 Structure of ankle and foot, specified as Achilles tendon.

The primary ICF activities and participation codes associated with Achilles tendinopathy are d4500 Walking short distances, d4501 Walking long distances, d4552 Running, d4553 Jumping, and d9201 Sports.

A comprehensive list of codes was published in the previous guideline.22

ORGANIZATION OF THE GUIDELINE

For each topic, the summary recommendation and grade of evidence from the 2010 guideline are presented, followed by a synthesis of the recent literature with the corresponding evidence levels. Each topic concludes with the 2018 summary recommendation and its updated grade of evidence.

CLINICAL GUIDELINES

Impairment/Function-Based Diagnosis

PREVALENCE 2010 Summary

Disorders of the Achilles tendon rank among the most frequently reported overuse injuries in the literature. 30,116,128,130 The majority of those suffering from Achilles tendinopathy are active individuals, often involved in recreational or competitive sports.¹¹⁴ Estimates of the annual incidence of Achilles tendinopathy in runners range between 7% and 9%. 101,114 However, cases have been reported in sedentary groups as well. 92,164 Although runners appear to be the most commonly affected cohort, 114,116,118,145 Achilles disorders have been reported in a wide variety of sports. 64,68,114,116,207 Athletes are more likely to become symptomatic when training as opposed to during competitive events. 101,207 While there is an increased prevalence of Achilles injury as age increases, 64,113 the mean age of those affected by Achilles disorders is between 30 and 50 years. 130,148,167 While sex has not been directly studied, data from multiple works suggest that males are affected to a greater extent than females. 116,145,167

Evidence Update

- The prevalence of Achilles tendinopathy in elite male soccer players during 1 season ranged from 2.1% to 5.1%.⁷⁶
- In a large prospective cohort of novice runners, 7% went on to develop Achilles tendinopathy. 140
- A systematic review by Sobhani et al¹⁸³ found Achilles tendinopathy to be one of the most common overuse foot and ankle injuries in sports. In a separate systematic review, the reported prevalence of Achilles tendinopathy in the general running and ultramarathon populations ranged from 6.2% to 9.5% and 2.0% to 18.5%, respectively.¹²²
- Achilles tendinopathy was diagnosed in 1.8% of adolescent athletes at a pre-sports participation annual health examination.²³
- The incidence of Achilles tendinopathy was found to be 1.85 per 1000 patients⁴³ and 2.16 per 1000 person-years³ in Dutch general practice populations.

A review of more than 20 million patient records found that individuals between 40 and 59 years of age were most commonly diagnosed as having Achilles tendinopathy, with a significantly higher incidence than that seen in those between 20 and 39 and between 60 and 69 years of age. No difference in the incidence of Achilles tendinopathy was found between males and females.²¹¹

Achilles tendinopathy was found to occur in 12.5% of rock climbers.¹⁹

2018 Summary

Midportion Achilles tendinopathy continues to be a relatively common overuse lower extremity soft tissue injury for individuals who are active and participate in sports.

PATHOANATOMICAL FEATURES 2019 Summary and Undate

2018 Summary and Update

The major complaint of those with midportion Achilles tendinopathy is pain that limits activity. Pain is preceded by an excessive mechanical stressor, such as tensile loading and/ or shearing, which initiates pathological changes in the tendon. 123,129 These pathological changes can include tenocyte proliferation with tendon thickening, 12,23,55 neovascularity, 44,151 collagen fibril thinning and disorganization, 129 increase of noncollagenic and fibrocartilage matrix, 20,47 fat deposition, 67,73,78,91 altered fluid movement,84 and overproduction of nitric acid with tissue apoptosis. 146 Failure to control hyperthermia that results during exercise, as tendons convert some of the stored energy to heat, can also contribute by causing local cell death.129 Tendon changes associated with the pathological process weaken the mechanical and material properties of the tendon. These changes lead to a decrease in tendon stiffness and strength, 8,9,83,84 ineffective force transfer, 28,96,141 thereby affecting central nervous system motor control.25 This may provide a rationale for the use of mechanical loading to potentially increase tendon stiffness. Inflammation and degeneration are usually not mutually exclusive but can coexist to a varying extent throughout this process. 35,99,111,119,150,152

The extent and/or severity of tendon abnormalities are not consistently related to the severity of clinical presen-

tation.^{31,33,42,44,45,48,54,56,63,79,84} Also, presymptomatic tendon thickening has been documented,31,100 and bilateral tendon changes have been found in those with unilateral symptoms. 56,84 The plantaris tendon may be involved in those with chronic Achilles tendinopathy. 21,129,142,154,185 The plantaris tendon and associated peritendinous nerve structures may cause impingement on the medial aspect of the thickened Achilles tendon, contributing to pain and activity limitations. 129,185,186

Systematic reviews have identified genetic variants as important factors in the pathogenesis of tendinopathy. 37,129 An abnormal neuronal phenotype can disrupt normal tendon homeostasis and healing after injury.37 The neuronal response to tendon injury involves nerve ingrowth, increased sensitivity to neuronal pain mediators, and receptor activation for these mediators. 15,29,37,82,100 Neuronal changes activate the nociceptive pathways to higher centers and are responsible for the perception of pain. Therefore, altered central nervous system pain processing may also be an important factor in persistent tendon pain. 38,89,98,182,195 However, a recent study found that those with Achilles tendinopathy did not display significant features of central sensitization.¹⁵³ Genetic variants, such as those associated with mRNA stability, can predispose individuals to abnormalities in collagen production.^{2,46,62,75,88,155,171,173,179,180} This abnormal collagen may negatively affect the mechanical and material properties of the tendon, leading to ineffective force transfer. 46,61,155 The relationship between genotype, abnormal collagen, mechanical stress, and symptom presentation is multifactorial and not well understood.^{11,72,156,163,172}

RISK FACTORS 2010 Summary

For specific groups of individuals, clinicians should consider abnormal ankle dorsiflexion range of motion, abnormal subtalar joint range of motion, decreased ankle plantar flexion strength, increased foot pronation, and abnormal tendon structure as intrinsic risk factors associated with Achilles tendinopathy. Obesity, hypertension, hyperlipidemia, and diabetes are medical conditions associated with Achilles tendinopathy. Clinicians should also consider training errors, environmental factors, and faulty equipment as extrinsic risk factors associated with Achilles tendinopathy.

Evidence Update

A systematic review by Dowling et al⁵⁸ investigating dynamic foot function as a risk factor for lower-limb overuse injuries included only 1 study related to Achilles tendinopathy. This prospective study found altered posterior/anterior force displacement and an increase in laterally directed force distribution underneath the forefoot as risk factors for developing Achilles tendinopathy in runners who

were noted to be "heel-strikers."200 A prospective cohort study not included in this review found that runners who displayed more medial pressure during stance phase were at risk for injury.18

- Franceschi et al⁶⁹ identified obesity as a risk factor \prod for developing tendinopathies in their systematic review.
- A systematic review by McAuliffe et al134 found that tendon abnormalities visualized using ultrasound imaging in asymptomatic tendons were predictive of future tendinopathy. Specifically, in athletes, increased tendon thickness100 and sonographic abnormalities (moderate or severe hypoechoic defects)31 were identified as risk factors for the development of Achilles tendinopathy.
- A retrospective study investigated injuries in military recruits who were given either a rigid (n = 1416) or shock-absorbing (n = 1338) insole when issued combat boots. The recruits issued a shock-absorbing insole had a 50% reduction in Achilles tendinopathy rate, with an incidence of 4% compared to 8% with the rigid insoles.93
- A systematic review identified intrinsic risk factors $\Pi\Pi$ for Achilles tendinopathy to include increasing age, male sex, increased body weight, poor tendon temperature regulation, presence of systemic diseases, decreased muscle strength, decreased flexibility, previous injuries, poor blood supply, and genetic variants. 129 One study in this review found those with a family history of tendinopathy to have 5 times the risk of developing Achilles tendinopathy.¹¹⁰
- Systematic reviews found that gene variants influ- $\Pi\Pi$ enced the development of Achilles tendinopathy. 108,202 Specifically, genes associated with the collagen-production pathway may functionally affect tendon strength and stiffness, leading to an abnormal tendon response to loading. This was supported by other studies not included in this review.75,157
- A systematic review by Lorimer and Hume¹²³ found a posterior-directed center of force when landing, combined with reduced eccentric strength, as potential risk factors for Achilles injury, while having a high arch and generating high propulsion forces were found to be protective against injury.
- Reviews have noted limited evidence for hip muscle performance as risk factors when generally looking at leg, ankle, and foot injuries. 138,188 However, another review by Semciw et al 177 found neuromuscular deficits

in gluteus medius function in those with Achilles tendinopathy. A study not included in this review found weakness in the hip abductors, external rotators, and extensors bilaterally in recreational male athletes with chronic midportion Achilles tendinopathy. 6 Other studies have specifically identified neuromuscular deficits in the gluteus maximus, 70 rectus femoris, 214 tibialis anterior, 214 lateral gastrocnemius, 214 and triceps surae muscle complex 204; altered hip, knee, and ankle moments 105; altered hip biomechanics 34; increased lower-limb stiffness 39; balance deficits 175; and abnormal lower extremity kinematics during dancing push-off maneuvers 115 as intrinsic risk factors.

In a sample of 24 elite, female soccer players, a sportspecific proprioception training program performed over a 2.5-year duration decreased the rate of Achilles tendinopathy and days lost from play due to injury.¹⁰⁹

One study in the review by Franceschi et al⁶⁹ identified a potential interaction between age and obesity with degenerative tendon changes.¹⁷⁶ Those with dyslipidemia and fat deposition in the Achilles tendon may be at risk for developing tendon pain.⁷³ This finding is consistent with a systematic review that found that elevated adiposity was frequently associated with general tendon injuries.⁷⁴

A study of master track-and-field athletes did not find any influence of age, sex, weight, height, or participation in high- versus low-impact activities on the development of Achilles tendinopathy. However, elderly individuals with diabetes who participated in sports were found to be at increased risk for Achilles tendinopathy.

The review by Magnan et al¹²⁹ also identified extrinsic factors in the development of Achilles tendinopathy to include environmental conditions, shoes, equipment, surfaces, and physical activity/sport participation. One study of professional ballet dancers noted overuse injuries to be more common in females and in more technically demanding ballet techniques.¹⁸⁴

Systematic reviews have specifically identified an increased risk of tendon injury with use of fluoro-quinolone antibiotic therapy.^{117,120,129,189}

A study included in above reviews found mitochondrial damage to tenocytes during fluoroquinolone treatment to be potentially involved in tendon pathology.¹²⁴

2018 Summary

The risk of developing midportion Achilles tendinopathy is multifactorial and likely related to an interaction of intrinsic

and extrinsic factors that lead to tendon overloading. The body's response to loading will be influenced by health conditions, drugs, and genetic factors. Consequently, many studies of eccentric loading have excluded patients with presumed tissue frailty (TABLE 2). While these conditions are believed to increase risk during eccentric activity, the interactions between physical loads and tendon symptoms are poorly understood for these patients. Clinicians should consider these risk factors in the patient's differential diagnosis.

TABLE 2

Summary of Exclusion Criteria From Studies of Eccentric Exercises Due to Presumed Frailty of the Plantar Flexor Mechanism and Local Area

Exclusion	Example
Surgery	Tendon rupture repair
Connective tissue diseases	
Systemic diseases/disorders	Rheumatic diseases, diabetes
Genetic diseases	Marfan's syndrome
Medications	Local steroid injection, systemic fluoroquinolones
Pregnancy	
Age	Youths and adolescents
Fracture	
Other local disease states	Peripheral vascular disease

An individual with any number of lower extremity impairments that lead to abnormal kinetics and/or kinematics that specifically produce an eccentric overload of the Achilles tendon may be at risk for Achilles tendon injury. The use of shock-absorbing insoles may help prevent midportion Achilles tendinopathy.

CLINICAL COURSE 2010 Summary

No summary.

Evidence Update

In elite male soccer players, missed participation because of symptoms related to Achilles tendinopathy was relatively brief (median, 10 days; average, 23 days). However, recurrence rate was high (27%), with a greater risk of reinjury for players resting less than 10 days. In those with severe tendinopathies (more than 28 days lost), 38% required surgical intervention.⁷⁶

In a large prospective cohort of runners, the median time to recovery was 82 days (minimum, 21; maximum, 479). 140

The lack of uniformity in Achilles tendon structure Ш on ultrasonography (hyperechogenicity/hypoechogenicity) is not a consistent predictor for outcome.12,42

Sex may influence response to treatment with ec- \prod centric exercise, as females with Achilles tendinopathy perceived more pain and less of an improvement in function compared to males following 12 weeks of eccentric training.107

Good long-term outcomes were noted in 4.2-year⁷⁹ Ш and 5-year¹⁹⁹ follow-up studies of individuals who completed a 3-month heavy-load eccentric calf muscle training program. However, mild pain persisted in some individuals, 199 and there was considerable variability in treatment outcomes. 71,130,168

A study of National Basketball Association players found that there was an association between Achilles tendinopathy and a decline in performance, with younger players having a better chance of returning to competition.6

Conflicting evidence related to body mass index (BMI) was identified. The systematic review by Franceschi et al⁶⁹ found that greater BMI played a role in the development of Achilles tendinopathy. However, a study in this review revealed that BMI did not influence response to nonsurgical treatment. 106

A case series by Silbernagel et al¹⁸² found that 80% (27/34) of participants who completed a 12-week to 6-month progressive Achilles tendon-loading strengthening program were fully recovered at 5-year follow-up.

2018 Summary

In athletes with midportion Achilles tendinopathy, missed participation can be expected to be brief. However, a decline in performance may occur in older athletes, and symptoms may return if not properly treated immediately after injury. Recovery time can vary from brief to many months and is probably dependent on the severity of the injury. Recovery may be influenced by intrinsic factors, such as sex. While most patients will improve, mixed levels of recovery can be anticipated.

DIAGNOSIS/CLASSIFICATION

2010 Recommendation

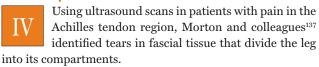
Self-reported localized pain and perceived stiffness in the Achilles tendon following a period of inactivity (eg, sleep, prolonged sitting) lessen with an acute bout of activity and may increase after the activity. Symptoms are frequently accompanied by Achilles tendon tenderness, a positive arc sign, and positive findings on the Royal London Hospital test. These signs and symptoms are useful clinical findings for classifying a patient with ankle pain into the ICD category of Achilles bursitis or tendinitis and the associated ICF impairment-based category of Achilles pain (b28015 Pain in lower limb), stiffness (b7800 Sensation of muscle stiffness), and muscle power deficits (b7301 Power of muscles of lower limb).

Evidence Update

Hutchison et al94 examined 21 participants with and without Achilles tendinopathy who underwent an ultrasound scan followed by 10 clinical tests for midportion Achilles tendinopathy. Subjective reporting of pain 2 to 6 cm proximal to the Achilles insertion, extending to the calcaneus (sensitivity, 84%; specificity, 73%; K = 0.74-0.96), and pain with palpation of the midportion of the tendon (sensitivity, 78%; specificity, 77%; $\kappa = 0.75-0.81$) was found to be accurate and reliable in diagnosing midportion Achilles tendinopathy.

Reiman and colleagues¹⁶⁰ performed a systematic review and meta-analysis of the utility of current clinical measures for the diagnosis of Achilles tendon injuries. Because only 2 studies met the inclusion criteria, the authors determined that further high-quality studies are needed.

2018 Recommendation


In addition to the arc sign and Royal London Hospital test,127 clinicians can use a subjective report of pain located 2 to 6 cm proximal to the Achilles tendon insertion that began gradually and pain with palpation of the midportion of the tendon to diagnose midportion Achilles tendinopathy.

DIFFERENTIAL DIAGNOSIS

2010 Recommendation

See slightly modified recommendation below.

Evidence Update

The plantaris tendon may play a role in chronic midportion Achilles regional pain. A recent retrospective study examined the incidence of plantaris

injuries in track-and-field athletes and found that plantaris injury occurred with an annual incidence of 3.9% to 9.3%. ¹⁵⁴

Dalbeth and colleagues³⁶ reported on the frequency and patterns of monosodium urate (MSU) crystal deposition in tendons and ligaments of patients with gout using dual-energy computed tomography (DECT). Ninety-two people with tophaceous gout had DECT scanning of both feet, with the Achilles tendon being the most common site of MSU crystal deposition.

2010 and 2018 Summary

Clinicians should consider diagnostic classifications other than midportion Achilles tendinopathy, including involvement of the plantaris tendon, ¹⁵⁴ when the patient's reported activity limitations or impairments of body function and structure are not consistent with those presented in the Diagnosis, Classification, and Clinical Course sections of this updated guideline, or when the patient's symptoms are not resolving with interventions aimed at normalization of the patient's impairments of body function.

The following conditions should be considered in the differential diagnosis of patients presenting with posterior ankle pain:

- Acute Achilles tendon rupture^{4,166}
- Partial tear of the Achilles tendon^{24,104}
- Retrocalcaneal bursitis102
- Posterior ankle impingement¹⁷⁰
- Irritation or neuroma of the sural nerve⁴
- Os trigonum syndrome¹³²
- Accessory soleus muscle¹²⁵
- Achilles tendon ossification¹⁶¹
- Systemic inflammatory disease⁵
- Plantaris tendon involvement¹⁵⁴
- Fascial tears¹³⁷
- · Insertional Achilles tendinopathy

IMAGING

2010 Summary

When a diagnosis of Achilles tendinopathy is not clear from the history and physical examination, imaging studies are warranted. Ultrasound and magnetic resonance imaging (MRI) are of assistance when clinical exam results are not sufficient to arrive at a diagnosis.

2018 Update and Summary

Ultrasound imaging and MRI may be useful in assessing for differential diagnoses and identifying coexisting pathology, such as partial ruptures, bursitis, paratendonitis, plantaris involvement, and/or fascial tears.^{53,60,133,137} Research studies on patients with midportion Achilles tendinopathy commonly use imaging techniques to examine the severity of ten-

dinopathy, with signs including increased tendon thickness (eg, anterior/posterior diameter or cross-sectional area), altered composition (eg, echogenicity on ultrasound and signal intensity on MRI), and/or neovascularization (eg, location and extent of activity on Doppler ultrasound). 9,78,143,151,191,201,208 However, there is conflicting evidence on the level of association between severity of tendon abnormalities and symptoms. 12,16,42,44,51,56,63,67,80,85,143,144,162,178,187,193,201,209,210 There are techniques currently being developed using ultrasound elastography to estimate tissue mechanical properties (eg, strain and stiffness), which may provide greater insight into tendon pathology in the future. 77,90

Decision Tree Model

A pathoanatomical/medical diagnosis of midportion Achilles tendinopathy can provide valuable information in describing tissue pathology and may assist in planning treatment and predicting prognosis. The proposed model for examination, diagnosis, and treatment planning for patients with Achilles pain, stiffness, and muscle power deficits associated with midportion Achilles tendinopathy uses the following components: (1) medical screening, (2) classification of the condition through evaluation of clinical findings suggestive of musculoskeletal impairments of body functioning (ICF) and associated tissue pathology/disease (ICD, 3) determination of irritability stage, (4) determination of evaluative outcome measures, and (5) intervention strategies for patients in acute and nonacute stages. This model is depicted in the **FIGURE**.

Component 1

Medical screening incorporates the findings from the history and physical examination to determine whether the patient's symptoms originate from a condition that requires referral to another health care provider. Acute Achilles tendon rupture and systemic inflammatory disease would be examples of conditions that would require referral to another health care provider.

Component 2

Evaluation of physical examination findings, as outlined in the **FIGURE**, should be consistent with the diagnosis of midportion Achilles tendinopathy. The diagnosis and management of the patient's condition should be appropriately modified if the evaluation of clinical findings related to the musculoskeletal impairments of body functioning (ICF) and associated tissue pathology/disease (ICD) suggest other foot or ankle conditions in a differential diagnosis list, symptoms from the lumbopelvic region, or systemic or medical disease.

Component 3

Irritability is a term used by rehabilitation practitioners to reflect the tissue's ability to handle physical stress, ¹³⁵ and is

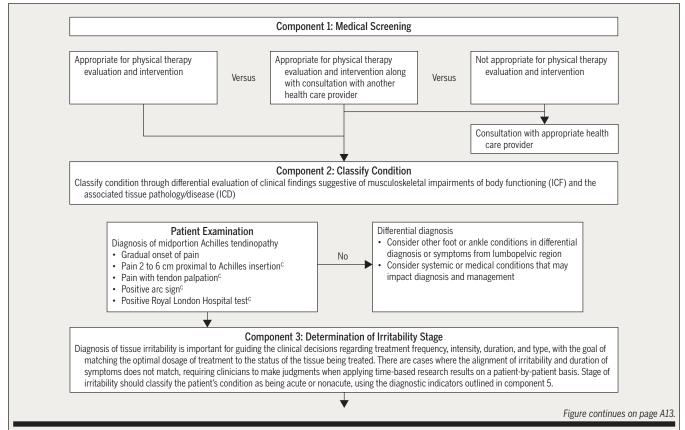


FIGURE. Model of diagnosis, examination, and treatment of Achilles pain, stiffness, and muscle power deficits. Superscript letters indicate that the guidelines are based on (A) strong evidence, (B) moderate evidence, (C) weak evidence, (D) conflicting evidence, (E) theoretical/foundational evidence, or (F) expert opinion.

presumably related to physical status and the extent of injury and inflammatory activity that is present. Diagnosis of tissue irritability as acute or nonacute, according to the signs, symptoms, and duration of the condition, is important in guiding the clinical decisions regarding the intervention strategies as outlined in component 5.

Component 4

Outcome measures include an assessment of the patient's functional level and associated physical impairments as outlined in the FIGURE. Standardized tools, such as the VISA-A, FAAM, and LEFS, can be used for measuring a specific domain, whether it is a body structure or function, activity limitation, or participation restriction. Outcome measures are important in direct management of individual patient care, and they provide the opportunity to collectively compare care and determine effectiveness through the repeated application of standardized measurement.

Component 5

Intervention strategies outline criteria for treatment selection based on diagnostic indicators and clinical examination findings and allow for treatment planning based on re-evaluation. Interventions are grouped based on the following categories: therapeutic exercise (exercise, stretching, neuromuscular education), manual therapy, education (patient education, patient counseling), home use of medical supplies (bracing), and clinical use of medical devices (iontophoresis). A higher level of evidence indicates greater scientific support for the recommendation, not necessarily the intervention itself. For example, there is a relatively high-level of evidence for the recommendation not to use night splints for patients with midportion Achilles tendinopathy. Interventions outside of the scope of physical therapy, including corticosteroid injection, extracorporeal shockwave therapy (ESWT), and platelet-rich plasma (PRP) injections, are included as education for patients who are seeking additional treatment options. Of note, the majority of studies include patients with chronic midportion Achilles tendinopathy. Therefore, treatment of a patient with acute Achilles tendinopathy may depend more on clinical judgment and expert opinion.

Component 4: Outcome Measures

Measures to assess level of functioning, presence of associated physical impairments to address with treatment, and response to treatment

- The VISA-A as a measure of symptom severity and the FAAM or LEFS as a measure of self-reported activity limitation and participation restriction^A
- Pain visual analog scale to assess pain^F
- Active and passive talocrural dorsiflexion range of motion^F
- · Flexibility of the gastrocnemius and soleus muscle complex^F
- · Body mass index in nonathletic individuals^F

Successful recovery at 6 to 12 mo

VISA-A score >80
Tolerable intermittent pain
Resumed primary activities
Patient goals met

- Clinical performance measures, such as hop and heel-raise endurance tests^B
- Lower-quarter musculoskeletal and biomechanical assessment, to include the following elements of gait^f
 - First metatarsophalangeal joint range of motion and accessory mobility: to attain 65° of extension at preswing
 - Tibialis posterior strength and movement coordination to control midtarsal joint motion at loading response
 - Talocrural dorsiflexion range of motion, accessory mobility, gastrocnemius/soleus muscle length, and tissue mobility to attain 10° of dorsiflexion at terminal stance
 - Gastrocnemius/soleus strength and movement coordination to control tibial advancement at midstance and propulsion at terminal stance
 - Hip joint mobility and muscle flexibility to attain 10° of extension at terminal stance
 - Trunk, buttock, and thigh muscle strength and movement coordination to control lower-limb internal rotation at loading response, and hip adduction at loading response and midstance

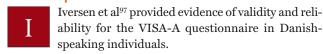
Component 5: Intervention Strategies Acute: Diagnostic Indicators Nonacute: Diagnostic Indicators · No redness, warmth, and swelling · Redness, warmth, and swelling • >3 mo in duration ≤3 mo in duration · Pain after the onset of or after completing higher-level activity (ie, · High levels of pain limiting low-level activity (ie, walking) jumping and running) Findings/interventions Findings/interventions · Pain and inflammation · Tendon pain with palpation, with or without presence of nodules lontophoresis^B Mechanical loading exercises: eccentric, concentric/eccentric, Other modalities^f or heavy load and slow speed^A · Loss of motion · Loss of motion Stretching^c Stretching^C Joint and/or soft tissue mobilization^F Joint and/or soft tissue mobilization^F · Painful motion · Painful motion - Rigid taping^F Rigid taping^F Other range-of-motion protective treatment (ie, bracing)^F Other range-of-motion protective treatment (ie, bracing)^F Include patient education^B and counseling^E · Abnormal lower-quarter musculoskeletal and biomechanical Neuromuscular exercises targeting lower extremity impairments that may lead to abnormal kinetics and/or kinematics^F Include patient education^B and counseling Re-evaluate Patient goals met Not improving Discharge to self-management Refer Consultation with other providers (extracorporeal

FIGURE (CONTINUED). Model of diagnosis, examination, and treatment of Achilles pain, stiffness, and muscle power deficits. Superscript letters indicate that the guidelines are based on (A) strong evidence, (B) moderate evidence, (C) weak evidence, (D) conflicting evidence, (E) theoretical/foundational evidence, or (F) expert opinion.

shockwave therapy, corticosteroid injection,

platelet-rich plasma injection, etc)

CLINICAL GUIDELINES


Examination

OUTCOME MEASURES – ACTIVITY LIMITATIONS/ SELF-REPORTED MEASURES

2010 Recommendation

Clinicians should incorporate validated functional outcome measures, such as the Victorian Institute of Sport Assessment-Achilles (VISA-A) and the Foot and Ankle Ability Measure (FAAM). These should be utilized before and after interventions intended to alleviate the impairments of body function and structure, activity limitations, and participation restrictions associated with Achilles tendinopathy.

Evidence Update

The VISA-A has been validated for patients with Π Achilles tendinopathy who speak Turkish⁵⁷ and French.¹⁰³ The validity and reliability findings in these studies are consistent with the results reported in the previously published Achilles tendinopathy guideline.²²

Systematic reviews have assessed the evidence to support outcome measures for those with lowerleg, ankle, and foot conditions. 136,181 The Lower Extremity Functional Scale (LEFS) and FAAM were found to be most commonly used, with the FAAM receiving the highest quality assessment score for responsiveness.¹⁸¹ A separate systematic review found evidence of reliability, validity, and responsiveness to support the LEFS for individuals with lower-limb musculoskeletal conditions. 136

2018 Recommendation

Clinicians should use the VISA-A to assess pain and stiffness, and either the FAAM or the LEFS to assess activity and participation in patients with a diagnosis of midportion Achilles tendinopathy.

ACTIVITY LIMITATIONS/PHYSICAL PERFORMANCE MEASURES

2010 Recommendation

When evaluating functional limitations over an episode of care for those with Achilles tendinopathy, measures of activity limitation and participation restriction can include objective and reproducible assessment of the ability to walk, descend stairs, perform unilateral heel raises, single-limb hop, and participate in recreational activity.

Evidence Update

A review by MacDermid and Silbernagel126 summarized physical performance measures for selected upper and lower extremity tendinopathies. They recommended the hop tests and the heel-raise endurance test in the evaluation of functional performance in patients with Achilles tendinopathy.

2018 Recommendation

Clinicians should use physical performance mea-B sures, including hop and heel-raise endurance tests as appropriate, to assess a patient's functional status and document findings.

PHYSICAL IMPAIRMENT MEASURES

Recommended impairment measures and their properties are provided in the 2010 CPG. $^{\rm 22}$ See the <code>FIGURE</code> in the 2010 CPG for the summary of recommended physical impairment measures.

2010 and 2018 Recommendation

When evaluating physical impairment over an episode of care for those with Achilles tendinopathy, one should measure ankle dorsiflexion range of motion, subtalar joint range of motion, plantar flexion strength and endurance, static arch height, forefoot alignment, and pain with palpation.

CLINICAL GUIDELINES

Interventions

A systematic search of the literature did not reveal articles to alter the 2010 recommendations for iontophoresis, manual therapy, or heel lifts in the treatment of midportion Achilles tendinopathy. Updated recommendations are provided for exercise, which includes eccentric, eccentric/concentric, and heavy-load, slow-speed protocols; stretching; night splints; low-level laser therapy (LLLT); orthoses; taping; neuromuscular re-education; and dry needling. Although corticosteroid injection, ESWT, and PRP injections are used as interventions for those with Achilles tendinopathy, they are outside the scope of physical therapy practice, and therefore only summaries are provided for patient education purposes.

EXERCISE2010 Recommendation

Clinicians should consider implementing an eccentric loading program to decrease pain and improve function in patients with midportion Achilles tendinopathy.

Evidence Update

In a systematic review by Sussmilch-Leitch et al,¹⁹² 9 randomized controlled trials, all published before 2009, directly studied eccentric exercise. This systematic review supported the use of eccentric exercise for midportion Achilles tendinopathy.

Beyer et al14 found similar outcomes for a heavyload, slow-speed exercise and an eccentric training protocol. The heavy-load, slow-speed exercise protocol included 3 bilateral full-range-of-motion heel-raise exercises performed at a speed of 6 seconds per repetition as follows: (1) flexed knee on a seated calf-raise machine, (2) extended knee with the barbell on shoulders, and (3) extended knee on a leg-press machine. The 12-week program included increasing weight with progressively decreasing repetitions. The dosages per week were as follows: week 1, 3 sets of 15 repetitions; weeks 2 and 3, 3 sets of 12 repetitions; weeks 4 and 5, 4 sets of 10 repetitions; weeks 6 to 8, 4 sets of 8 repetitions; and weeks 9 to 12, 4 sets of 6 repetitions. Notable findings at 52-week follow-up included lower visual analog scale (VAS) pain scores during running in both groups (mean VAS change from 0 to 52 weeks: eccentric training group, -38 [95% confidence interval (CI)]: -49.9, -25.6; heavy, slow resistance group, -49 [-62.8, -35.5]), lower VISA-A in both groups (mean VISA-A change from 0 to 52 weeks: eccentric

training group, -27.0 [-35.6, -18.0]; heavy, slow resistance group, -34.0 [-41.8, -26.5]), decreased anterior-to-posterior tendon width, and decreased Doppler signal. Although at 52 weeks patients in both groups continued to have pain with running (mean VAS running: eccentric exercise group, 12 [95% CI: 3.2, 19.8]; heavy, slow resistance group, 5 [-0.5, 9.8]), patients in both groups expressed high levels of satisfaction (eccentric exercise group, 76%; heavy, slow resistance group, 98%).

Although several systematic reviews supported eccentric exercises, heterogeneity across exercise protocols was identified, including factors such as maximum load, speed of contraction, and frequency of sessions not being adequately controlled. 71,87,130,168 Malliaras et al 131 noted that trials often did not isolate eccentric from concentric contractions, and therefore questioned the need for an eccentric only exercise protocol. However, Frizziero et al 71 found eccentric training to be more effective than concentric exercises, general therapeutic exercise, and ESWT. It should be noted that compliance with eccentric training (27%-72%)87 and outcomes were found to vary considerably across studies. 71,87,130,168

A randomized controlled trial (n = 80, 20 per group) examined daily eccentric exercise (twice per day, 7 days per week) compared to twice weekly eccentric exercise (once per day, twice per week). ¹⁹⁶ At 12 weeks, the differences in the VISA-A score between the daily exercise and twice-weekly eccentric exercise groups were not significant.

Stevens and Tan¹⁹⁰ compared 2 intensities of the Alfredson eccentric protocol in a small sample (13-15 per group) of patients. Those in the "do as tolerated" group completed an average of 112 repetitions daily, while those in the "protocol" group averaged 166 repetitions. No significant differences between groups were found on pain VAS or VISA-A scores at 6 weeks.

The case series study by Ram et al¹⁵⁸ evaluated the responses of 16 of 20 participants with chronic midportion Achilles tendinopathy who had tried at least 1 other treatment to a 12-week eccentric training program. Despite experiencing improved scores on the VISA-A, pain VAS, and Tegner activity scale, only 2 participants were satisfied with treatment. Compared to other studies, the low satisfaction may have to do with the fact that patients had a chronic condition and had tried other treatments.¹⁴

de Vos et al⁴⁸ examined changes in tendon structure IV using a specific ultrasonic tissue characterization approach before and after a 16-week eccentric exercise program. The changes defined by the ultrasonic tissue characterization approach found no association between collagen type and VISA-A scores at any time point.

Several randomized controlled trials compared eccentric exercise combined with other interventions to eccentric exercise alone. 41,49,50,147,165,196,197,212,215

The observed changes in the control groups (eccentric exercise alone) provide useful information. Improvement in symptom severity (VISA-A) across studies varied in these control groups from 2.4% at 8 weeks, 215 13% at 12 weeks, 147 22.6% at 16 weeks, 165 20.5% at 24 weeks, 50 to 25% to 30% at 52 weeks. 41,197 When eccentric exercise was combined with PRP, 41,49,50 autologous blood injections, 147 or prolotherapy,212 the results were equivalent to eccentric exercise alone. However, when eccentric exercise was combined with LLLT,196 ESWT,165 or acupuncture,215 studies favored the combined treatments.

It should be noted that studies have excluded participants with presumed frailty of the tendon structure because of metabolic or genetic diseases and drugs. Therefore, little is known about risks and benefits of eccentric exercise for these patients.

Because specific factors (eg, frequency, load, and speed) are not standardized across studies, the optimum parameters for exercise are yet to be formulated.

2018 Recommendation

Clinicians should use mechanical loading, which can be either in the form of eccentric or a heavyload, slow-speed (concentric/eccentric) exercise

program, to decrease pain and improve function for patients with midportion Achilles tendinopathy without presumed frailty of the tendon structure.

Patients should exercise at least twice weekly within their pain tolerance.

STRETCHING

2010 Recommendation

Clinicians may use plantar flexor stretching with the knee flexed and extended to reduce pain and improve satisfaction with outcome in patients with midportion Achilles tendinopathy who exhibit limited dorsiflexion range of motion.

Evidence Update

A study by Verrall et al²⁰³ evaluated a single cohort of patients performing a 6-week stretching program that was described as an "eccentric stretch-

ing" protocol. One set required participants to perform 9 plantar flexor stretches (6 with knee straight and 3 with knee bent) off the end of a step. Each "heel drop" stretch was held for 15 to 20 seconds. Participants increased from 1 set to 3 and from bilateral to the involved side over a 6-week period. Pain decreased on a 0-to-10 VAS scale from 7.2 at baseline to 2.9 at 12 weeks. Eighty-two percent of participants reported a level of satisfaction of 7/10 or greater with treatment.

2018 Recommendation

Clinicians may use stretching of the ankle plantar flexors with the knee flexed and extended to reduce pain and improve satisfaction with outcome in patients with midportion Achilles tendinopathy who exhibit limited ankle dorsiflexion range of motion.

NEUROMUSCULAR RE-EDUCATION

2010 Recommendation

No recommendation.

Evidence Update

Neuromuscular control among runners with midportion Achilles tendinopathy has been examined in several case-control studies. 10,13,70 Running stud-

ies identified patterns of decreased lower extremity muscle activity in participants with midportion Achilles tendinopathy compared to a control group. 10,13,70 However, it is unclear whether decreased muscle activity is a cause or a result of midportion Achilles tendinopathy, and whether an intervention targeting these altered patterns of muscle activity improve outcomes.

2018 Recommendation

ing activities.

Clinicians may use neuromuscular exercises targeting lower extremity impairments that may lead to abnormal kinetics and/or kinematics, specifically eccentric overload of the Achilles tendon during weight-bear-

MANUAL THERAPY

2010 Recommendation

Clinicians may use joint and soft tissue mobilization to reduce pain and improve mobility and function in patients with midportion Achilles

tendinopathy.

Evidence Update

Cheatham et al²⁷ looked at the efficacy of soft tissue mobilization in a systematic review. Although there were no studies specific to those with midportion Achilles tendinopathy, there appeared to be some evidence supporting instrument-augmented soft tissue mobilization for improving motion in a limited number of studies.

2018 Recommendation

Clinicians may consider using joint mobilization to improve mobility and function and soft tissue mobilization to increase range of motion for patients with midportion Achilles tendinopathy

PATIENT EDUCATION: ACTIVITY MODIFICATION 2010 Recommendation

No recommendation.

Evidence Update

Silbernagel et al¹⁸² compared the effects of continued sports activity (eg, running and jumping activities below a specified pain intensity) to active rest while patients completed an exercise program for midportion Achilles tendinopathy. Patients in the active rest group could choose to swim, run in deep water, bike, or walk as a daily activity. The specific guideline was for patients to maintain pain levels below a 5/10 on a VAS for all activities. All participants performed a standardized exercise program. Both groups significantly improved on the VISA-A at 5-year follow-up, with the mean VISA-A scores greater than 90 for both groups.¹⁸²

2018 Recommendation

B For patients with nonacute midportion Achilles tendinopathy, clinicians should advise that complete rest is not indicated and that they should continue with their recreational activity within their pain tolerance while participating in rehabilitation.

PATIENT COUNSELING

2010 Recommendation

No recommendation.

Evidence Update

There is no direct evidence that patient counseling benefits patients with Achilles tendinopathy. However, patient education and counseling are both considered important for patient care. 168,182

2018 Recommendation

Clinicians may counsel patients with midportion Achilles tendinopathy. Key elements of patient counseling could include (1) theories supporting use of physical therapy and role of mechanical loading; (2) modifiable risk factors, including BMI and shoewear; and (3) typical time course for recovery from symptoms.

HEEL LIFTS

2010 and 2018 Recommendation

Because contradictory evidence exists, no recommendation can be made for the use of heel lifts in patients with midportion Achilles tendinopathy.

NIGHT SPLINTS

2010 Recommendation

Night splints are not beneficial in reducing pain when compared to eccentric exercise in patients with Achilles tendinopathy.

Evidence Update

A systematic review by Sussmilch-Leitch et al¹⁹² found 2 studies with conflicting results on the additional effect of night splints added to an eccentric exercise program. A pooled meta-analysis found that a night splint provided no significant additional improvement in patient-reported symptoms (VISA-A) at 12 weeks.

A 1-year follow-up randomized controlled trial found no additional benefit of a night splint to eccentric exercise. 40 There were no significant differences in symptom severity (VISA-A) between groups at baseline or 3-month and 1-year follow-ups. There were also no significant differences between groups in morning stiffness or patient satisfaction at 1-year follow-up.

2018 Recommendation

Clinicians should not use night splints to improve symptoms in patients with midportion Achilles tendinopathy.

ORTHOSES

2010 Recommendation

A foot orthosis can be used to reduce pain and alter ankle and foot kinematics while running in patients with Achilles tendinopathy.

Evidence Update

Two systematic reviews noted no effect of orthoses for patients with midportion Achilles tendinopathy. 130,168

Munteanu et al¹³⁹ examined the effects of a custom orthosis compared with a sham orthosis. All participants also performed an eccentric exercise program. No difference was found in VISA-A scores at baseline and at 1, 3, 6, and 12 months between the 2 groups.

2018 Recommendation

Because contradictory evidence exists, no recommendation can be made for the use of orthoses in patients with midportion Achilles tendinopathy.

TAPING

2010 Recommendation

Taping may be used in an attempt to decrease strain on the Achilles tendon in patients with Achilles tendinopathy.

Evidence Update

A systematic review noted that 1 of 2 low-level studies supported taping for midportion Achilles tendinopathy.168

A case-control study⁶⁶ examined the immediate effects of therapeutic elastic tape applied to the Achilles tendon and found application of tape did not improve hop distance or decrease pain.

2018 Recommendation

Clinicians should not use therapeutic elastic tape to reduce pain or improve functional performance patients with midportion Achilles tendinopathy.

Clinicians may use rigid taping to decrease strain on the Achilles tendon and/or alter foot posture in patients with midportion Achilles tendinopathy.

LOW-LEVEL LASER THERAPY 2010 Recommendation

Clinicians should consider the use of LLLT to decrease pain and stiffness in patients with Achilles tendinopathy.

Evidence Update

Tumilty and colleagues¹⁹⁷ compared LLLT to placebo laser treatment while both groups concurrently participated in an eccentric exercise program.

The laser parameters were set at 810 nm, 100-mW infrared probe, at 3.0 J per point (18 J per session). The LLLT group did not have clinically or statistically greater improvement in the numeric pain-rating scale or symptom severity (VISA-A) at baseline and at 4, 12, and 52 weeks.

Hutchison et al⁹⁵ compared LLLT to a placebo laser treatment using a laser probe, with a spectrum of 530 nm to 1100 nm, to administer a single pulse of 39 J. There were no differences between groups in symptom severity (VISA-A), pain (VAS), or function (LEFS) at baseline and at 6 or 12 weeks. In addition, at 12 weeks, neither group demonstrated a significant difference from baseline in patientreported outcome measures (95% CI of difference from baseline: VISA-A, -7.2, 7.2; VAS, -15.8, 9.6; LEFS, -4.44, 7.33).

A randomized trial (n = 80, 20 per group) examined 2 different exercise regimens and the ability of laser to supplement these programs. 196 The 4 arms of the study included placebo plus daily exercise, LLLT plus daily exercise, placebo plus twice-weekly exercise, and LLLT plus twice-weekly exercise. The key significant finding at 12 weeks was that the combination of LLLT plus twice-weekly exercise resulted in the greatest improvement in symptom severity over the 12-week period, as measured by the VISA-A (mean improvement, 18.5% [95% CI: 9.1%, 27.9%]), achieving an average score near the ceiling of the VISA-A (score, 99). In addition, differences between placebo plus daily exercise and LLLT plus daily exercise, although not significant, favored LLLT plus daily exercise by an average of 8.2% (95% CI: -1.3%, 17.7%). Although only the results for LLLT plus twiceweekly exercise were significant, the study was underpowered to determine whether laser was better than no laser. This leaves open the possibility that laser may have significant effects not just for specific exercise protocols but across different exercise protocols.

2018 Recommendation

Because contradictory evidence exists, no recommendation can be made for the use of LLLT in patients with midportion Achilles tendinopathy.

IONTOPHORESIS

2010 and 2018 Recommendation

Clinicians should use iontophoresis with dexamethasone to decrease pain and improve function in patients with acute midportion Achilles tendinopathy.

DRY NEEDLING 2010 Recommendation

No recommendation.

Evidence Update

In a recent prospective cohort study,²⁰⁶ comparisons were made between high-volume image-guided injection (HVIGI) with and without dry needling. Participants in the HVIGI-only group improved an average of 33.4 points on the VISA-A, while the participants in the HVIGI and dry needling group on average only improved by 6.9 points.

In a case series study by Yeo et al,²¹³ participants received tendon injection of marcaine (tendon decompression) followed by dry needling in conjunction with a 4-week eccentric exercise program. Pain VAS scores (0-100) during rest and activity decreased by 24% and 39.1%, respectively, at 6 weeks post procedure. At 12 and 24 months, 77% and 76% of participants, respectively, had high or very high satisfaction levels.

2018 Recommendation

Clinicians may use combined therapy of dry needling with injection under ultrasound guidance and eccentric exercise to decrease pain for individuals with symptoms greater than 3 months and increased tendon thickness.

INTERVENTIONS OUTSIDE THE SCOPE OF PHYSICAL THERAPY

Summaries were not provided in 2010 for corticosteroid injection, ESWT, and PRP injections.

CORTICOSTEROID INJECTION 2018 Summary

A systematic review of randomized controlled trials of corticosteroid injections for all types of tendinopathy concluded that an initial short-term benefit is not maintained at intermediate and long-term follow-up.³² Although the risk of a tendon rupture is low, other minor complications are more common, including postinjection pain, subcutaneous atrophy, and skin depigmentation.³² Patients with Achilles tendinopathy who did not respond to exercises alone received up to 3 glucocorticosteroid injections (76% received at least 1 injection) in this observational study (midportion tendinopathy, n = 75; insertional tendinopathy, n = 18).²⁰⁵ Patients managed with either exercise alone or a combination of exercise and glucocorticosteroid injections had good outcomes in this cohort at 6 months (94% reported improvement and 77% reported an excellent or good result).^{59,205} Similarly, in a recent randomized controlled study and systematic review, participants who received high-volume corticosteroid injections coupled with eccentric exercises demonstrated an improvement of 29 points in their VISA-A at 24 weeks, while those in the exercise-only group improved 11 points.^{17,26}

EXTRACORPOREAL SHOCKWAVE THERAPY 2018 Summary

Extracorporeal shockwave therapy, when combined with eccentric exercise for chronic midportion Achilles tendinopathy, is supported in some systematic reviews with improvement in VISA-A score, pain, and function.71,81,130,168,192 The only systematic review to perform a meta-analysis noted no effect favoring ESWT alone. However, qualitative evidence favors ESWT when combined with eccentric exercise. 192 Two case series also provide low-level evidence in support of the use of ESWT. 174,194 Saxena et al 174 demonstrated significant improvement with ESWT on a ranking of daily and recreational activities at 1-year follow-up, with a total of 78% of the patients considering themselves improved. Taylor et al¹⁹⁴ studied ESWT in patients with midportion Achilles tendinopathy who did not respond to initial therapy (average length of symptoms of 20 months). At 2-year follow-up, patients demonstrated an improvement in the VISA-A from 40 at baseline to 66.194 However, there was no difference in pain VAS between baseline and the 2-year follow-up. In summary, there is evidence that ESWT benefits patients with chronic midportion Achilles tendinopathy when combined with eccentric exercise. Evidence supporting ESWT alone and optimal dosage (eg, high versus low energy) is unclear.

PLATELET-RICH PLASMA INJECTION 2018 Summary

Many systematic reviews determined that high-level evidence does not support the use of PRP injections for a variety of outcomes, including VISA-A, return to sport, ultrasound measures, and function (eg, FAAM), for individuals with midportion Achilles tendinopathy. 7,52,65,112,159,169,198

AFFILIATIONS AND CONTACTS

AUTHORS

Christopher R. Carcia, PT, PhD Associate Professor Department of Physical Therapy John G. Rangos, Sr. School of Health Sciences **Duquesne University**

Pittsburgh, PA carcia@duq.edu

Ruth Chimenti, DPT, PhD Post Doctoral Fellow Department of Physical Therapy and Rehabilitation Science University of Iowa Iowa City, IA

Tyler Cuddeford, PT, PhD **Program Director** School of Physical Therapy George Fox University Newberg, OR tcuddeford@georgefox.edu

ruth-chimenti@uiowa.edu

Jeff Houck, PT. PhD Professor Director of Research Physical Therapy Program George Fox University Newberg, OR jhouck@georgefox.edu

Robroy L. Martin, PT, PhD Professor John G. Rangos, Sr. School of Health Sciences **Duquesne University** Pittsburgh, PA and Staff Physical Therapist **UPMC Center for Sports Medicine**

Pittsburgh, PA

martinr280@duq.edu

J.W. Matheson, DPT President and Clinic Director Catalyst Sports Medicine Hudson, WI jwmatheson@catalystsportsmedicine.com

Christine M. McDonough, PT, PhD ICF-Based Clinical Practice Guidelines

Orthopaedic Section, APTA, Inc La Crosse, WI

Assistant Professor of Physical Therapy School of Health and Rehabilitation Sciences

University of Pittsburgh Pittsburgh, PA Cmm295@pitt.edu

Stephen Paulseth, DPT, MS Paulseth & Associates Physical Therapy Los Angeles, CA www.paulsethpt.com Adjunct Clinical Instructor Division of Biokinesiology and Physical University of Southern California

Dane K. Wukich, MD Dr Charles F. Gregory Distinguished Chair of Orthopaedic Surgery University of Texas Southwestern Medical Center Dallas, TX

REVIEWERS

Los Angeles, CA

Paul Beattie, PT, PhD Clinical Professor Doctoral Program in Physical Therapy,

Department of Exercise Science Arnold School of Public Health University of South Carolina Columbia, SC

Yu-Jen Chang, PhD Assistant Professor Division of Physical Therapy School of Medicine West Virginia University Morgantown, WV yujen.chang@hsc.wvu.edu

pbeattie@mailbox.sc.edu

John DeWitt, DPT Director of Physical Therapy Residencies and Fellowships The Ohio State University Columbus, OH john.dewitt@osumc.edu

Amanda Ferland, DPT Clinical Faculty Tongji University/USC Division of Biokinesiology and Physical Therapy Orthopaedic Physical Therapy Residency and Spine Rehabilitation Fellowship Shanghai, China

AmandaFerland@incarehab.com

Sandra Kaplan, PT, PhD Clinical Practice Guidelines Coordinator Academy of Pediatric Physical Therapy, APTA, Inc and

Professor **Doctoral Programs in Physical Therapy** Rutgers University

Newark, NJ kaplansa@shp.rutgers.edu

David Killoran, PhD

Patient/Consumer Representative for the ICF-Based Clinical Practice Guidelines

Orthopaedic Section, APTA, Inc. La Crosse, WI and

Professor Emeritus Loyola Marymount University Los Angeles, CA david.killoran@lmu.edu

Leslie Torburn, DPT Principal and Consultant Silhouette Consulting, Inc. Sacramento, CA torburn@yahoo.com

GUIDELINES EDITORS

Christine M. McDonough, PT, PhD **ICF-Based Clinical Practice Guidelines** Orthopaedic Section, APTA, Inc.

La Crosse, WI

and

Assistant Professor of Physical Therapy School of Health and Rehabilitation

Sciences University of Pittsburgh Pittsburgh, PA cmm295@pitt.edu

Guy G. Simoneau, PT, PhD, ATC, FAPTA ICF-Based Clinical Practice Guidelines

Orthopaedic Section, APTA, Inc.

La Crosse, WI and Professor

Physical Therapy Department Marquette University Milwaukee, WI

guy.simoneau@marquette.edu

 $A {\sf CKNOWLEDGMENTS}. \ The \ authors \ would \ like \ to \ acknowledge \ the \ contributions \ of \ Dartmouth \ Biomedical \ Libraries \ Research \ and \ Education$

Librarians Heather Blunt and Pamela Bagley for their guidance and assistance in the design and implementation of the literature search. The authors would also like to acknowledge the assistance of Katherine Lynch, DPT, ATC, LAT, Assistant Athletic Trainer/Coordinator of Rehabilitation at Colorado College, for assistance in article reviewing for the search update.

REFERENCES

- 1. Abate M, Salini V, Schiavone C. Achilles tendinopathy in elderly subjects with type II diabetes: the role of sport activities. Aging Clin Exp Res. 2016;28:355-358. https://doi.org/10.1007/s40520-015-0391-7
- 2. Abrahams Y, Laguette MJ, Prince S, Collins M. Polymorphisms within the COL5A1 3'-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Ann Hum Genet. 2013;77:204-214. https://doi.org/10.1111/ahg.12013
- 3. Albers IS, Zwerver J, Diercks RL, Dekker JH, Van den Akker-Scheek I. Incidence and prevalence of lower extremity tendinopathy in a Dutch general practice population: a cross sectional study. BMC Musculoskelet Disord. 2016;17:16. https://doi.org/10.1186/s12891-016-0885-2
- 4. Alfredson H, Cook J. A treatment algorithm for managing Achilles tendinopathy: new treatment options. Br J Sports Med. 2007;41:211-216. https://doi.org/10.1136/bjsm.2007.035543
- 5. Ames PR, Longo UG, Denaro V, Maffulli N. Achilles tendon problems: not just an orthopaedic issue. Disabil Rehabil. 2008;30:1646-1650. https:// doi.org/10.1080/09638280701785882
- 6. Amin NH, McCullough KC, Mills GL, et al. The impact and functional outcomes of Achilles tendon pathology in National Basketball Association players. Clin Res Foot Ankle. 2016;4:205. https://doi. org/10.4172/2329-910X.1000205
- 7. Andia I, Maffulli N. Clinical outcomes of biologic treatment for chronic tendinopathy. Oper Tech Orthop. 2016;26:98-109. https://doi.org/10.1053/j. oto.2015.12.007
- 8. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol (1985). 2010;108:670-675. https://doi. org/10.1152/japplphysiol.00259.2009
- 9. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shearwave elastography. Radiology. 2015;274:821-829. https://doi.org/10.1148/ radiol.14140434
- 10. Azevedo LB, Lambert MI, Vaughan CL, O'Connor CM, Schwellnus MP. Biomechanical variables associated with Achilles tendinopathy in runners. Br J Sports Med. 2009;43:288-292. https://doi.org/10.1136/ bjsm.2008.053421
- 11. Bagge J, Gaida JE, Danielson P, Alfredson H, Forsgren S. Physical activity level in Achilles tendinosis is associated with blood levels of pain-related factors: a pilot study. Scand J Med Sci Sports. 2011;21:e430-e438. https:// doi.org/10.1111/j.1600-0838.2011.01358.x
- 12. Bakkegaard M, Johannsen FE, Højgaard B, Langberg H. Ultrasonography as a prognostic and objective parameter in Achilles tendinopathy: a prospective observational study. Eur J Radiol. 2015;84:458-462. https://doi. org/10.1016/j.ejrad.2014.11.028
- 13. Baur H, Müller S, Hirschmüller A, Cassel M, Weber J, Mayer F. Comparison in lower leg neuromuscular activity between runners with unilateral midportion Achilles tendinopathy and healthy individuals. J Electromyogr Kinesiol. 2011;21:499-505. https://doi.org/10.1016/j.jelekin.2010.11.010
- 14. Beyer R, Kongsgaard M, Hougs Kjaer B, Øhlenschlæger T, Kjaer M, Magnusson SP. Heavy slow resistance versus eccentric training as treatment for Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43:1704-1711. https://doi.org/10.1177/0363546515584760
- 15. Björklund E, Forsgren S, Alfredson H, Fowler CJ. Increased expression of cannabinoid CB1 receptors in Achilles tendinosis. PLoS One. 2011;6:e24731. https://doi.org/10.1371/journal.pone.0024731
- 16. Boesen AP, Boesen MI, Torp-Pedersen S, et al. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study. Am J

- Sports Med. 2012;40:548-555. https://doi.org/10.1177/0363546511435478
- 17. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion Achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med. 2017;45:2034-2043. https://doi. org/10.1177/0363546517702862
- 18. Brund RBK, Rasmussen S, Nielsen RO, Kersting UG, Laessoe U, Voigt M. Medial shoe-ground pressure and specific running injuries: a 1-year prospective cohort study. J Sci Med Sport. 2017;20:830-834. https://doi. org/10.1016/j.jsams.2017.04.001
- 19. Buda R, Di Caprio F, Bedetti L, Mosca M, Giannini S. Foot overuse diseases in rock climbing: an epidemiologic study. J Am Podiatr Med Assoc. 2013;103:113-120. https://doi.org/10.7547/1030113
- 20. Burssens A, Forsyth R, Bongaerts W, et al. Arguments for an increasing differentiation towards fibrocartilaginous components in midportion Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2013;21:1459-1467. https://doi.org/10.1007/s00167-012-2203-3
- 21. Calder JD, Stephen JM, van Dijk CN. Plantaris excision reduces pain in midportion Achilles tendinopathy even in the absence of plantaris tendinosis. Orthop J Sports Med. 2016;4:2325967116673978. https://doi. org/10.1177/2325967116673978
- 22. Carcia CR, Martin RL, Houck J, Wukich DK. Achilles pain, stiffness, and muscle power deficits: Achilles tendinitis. J Orthop Sports Phys Ther. 2010;40:A1-A26. https://doi.org/10.2519/jospt.2010.0305
- 23. Cassel M, Baur H, Hirschmüller A, Carlsohn A, Fröhlich K, Mayer F. Prevalence of Achilles and patellar tendinopathy and their association to intratendinous changes in adolescent athletes. Scand J Med Sci Sports. 2015;25:e310-e318. https://doi.org/10.1111/sms.12318
- 24. Chan O, Morton S, Pritchard M, et al. Intratendinous tears of the Achilles tendon - a new pathology? Analysis of a large 4-year cohort. Muscles Ligaments Tendons J. 2017;7:53-61. https://doi.org/10.11138/mltj/2017.7.1.053
- 25. Chang YJ, Kulig K. The neuromechanical adaptations to Achilles tendinosis. J Physiol. 2015;593:3373-3387. https://doi.org/10.1113/JP270220
- 26. Chaudhry FA. Effectiveness of dry needling and high-volume image-guided injection in the management of chronic mid-portion Achilles tendinopathy in adult population: a literature review. Eur J Orthop Surg Traumatol. 2017;27:441-448. https://doi.org/10.1007/s00590-017-1957-1
- 27. Cheatham SW, Lee M, Cain M, Baker R. The efficacy of instrument assisted soft tissue mobilization: a systematic review. J Can Chiropr Assoc. 2016;60:200-211.
- 28. Child S, Bryant AL, Clark RA, Crossley KM. Mechanical properties of the Achilles tendon aponeurosis are altered in athletes with Achilles tendinopathy. Am J Sports Med. 2010;38:1885-1893. https://doi. org/10.1177/0363546510366234
- 29. Christensen J, Alfredson H, Andersson G. Protease-activated receptors in the Achilles tendon-a potential explanation for the excessive pain signalling in tendinopathy. Mol Pain. 2015;11:13. https://doi.org/10.1186/ s12990-015-0007-4
- 30. Clement DB, Taunton JE, Smart GW. Achilles tendinitis and peritendinitis: etiology and treatment. Am J Sports Med. 1984;12:179-184. https://doi. org/10.1177/036354658401200301
- 31. Comin J, Cook JL, Malliaras P, et al. The prevalence and clinical significance of sonographic tendon abnormalities in asymptomatic ballet dancers: a 24-month longitudinal study. Br J Sports Med. 2013;47:89-92. https://doi.org/10.1136/bjsports-2012-091303
- 32. Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010;376:1751-

- 1767. https://doi.org/10.1016/S0140-6736(10)61160-9
- 33. Coombes BK, Tucker K, Vicenzino B, et al. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. 2018;28:1201-1208. https:// doi.org/10.1111/sms.12986
- 34. Creaby MW, Honeywill C, Franettovich Smith MM, Schache AG, Crossley KM. Hip biomechanics are altered in male runners with Achilles tendinopathy. Med Sci Sports Exerc. 2017;49:549-554. https://doi.org/10.1249/ MSS.0000000000001126
- 35. Dakin SG, Newton J, Martinez FO, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br J Sports Med. 2018;52:359-367. https://doi.org/10.1136/bjsports-2017-098161
- 36. Dalbeth N, Kalluru R, Aati O, Horne A, Doyle AJ, McQueen FM. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann Rheum Dis. 2013;72:1545-1548. https://doi.org/10.1136/ annrheumdis-2012-202786
- 37. Dean BJ, Franklin SL, Carr AJ. The peripheral neuronal phenotype is important in the pathogenesis of painful human tendinopathy: a systematic review. Clin Orthop Relat Res. 2013;471:3036-3046. https://doi. org/10.1007/s11999-013-3010-y
- 38. Debenham J, Butler P, Mallows A, Wand BM. Disrupted tactile acuity in people with Achilles tendinopathy: a preliminary case-control investigation. J Orthop Sports Phys Ther. 2016;46:1061-1064. https://doi. org/10.2519/jospt.2016.6514
- 39. Debenham JR, Travers MJ, Gibson W, Campbell A, Allison GT. Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-maximal hopping task. J Sci Med Sport. 2016;19:69-73. https://doi.org/10.1016/j. jsams.2014.11.391
- 40. de Jonge S, de Vos RJ, Van Schie HT, Verhaar JA, Weir A, Tol JL. One-year follow-up of a randomised controlled trial on added splinting to eccentric exercises in chronic midportion Achilles tendinopathy. Br J Sports Med. 2010;44:673-677. https://doi.org/10.1136/bjsm.2008.052142
- **41.** de Jonge S, de Vos RJ, Weir A, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39:1623-1629. https://doi.org/10.1177/0363546511404877
- **42.** de Jonge S, Tol JL, Weir A, Waarsing JH, Verhaar JA, de Vos RJ. The tendon structure returns to asymptomatic values in nonoperatively treated Achilles tendinopathy but is not associated with symptoms: a prospective study. Am J Sports Med. 2015;43:2950-2958. https://doi. org/10.1177/0363546515605077
- 43. de Jonge S, van den Berg C, de Vos RJ, et al. Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med. 2011;45:1026-1028. https://doi.org/10.1136/bjsports-2011-090342
- 44. De Jonge S, Warnaars JL, De Vos RJ, et al. Relationship between neovascularization and clinical severity in Achilles tendinopathy in 556 paired measurements. Scand J Med Sci Sports. 2014;24:773-778. https://doi. org/10.1111/sms.12072
- 45. De Marchi A, Pozza S, Cenna E, et al. In Achilles tendinopathy, the neovascularization, detected by contrast-enhanced ultrasound (CEUS), is abundant but not related to symptoms. Knee Surg Sports Traumatol Arthrosc. In press. https://doi.org/10.1007/s00167-017-4710-8
- **46.** de Mos M, Joosten LA, Oppers-Walgreen B, et al. Tendon degeneration is not mediated by regulation of Toll-like receptors 2 and 4 in human tenocytes. J Orthop Res. 2009;27:1043-1047. https://doi.org/10.1002/ jor.20834
- 47. de Mos M, Koevoet W, van Schie HT, et al. In vitro model to study chondrogenic differentiation in tendinopathy. Am J Sports Med. 2009;37:1214-1222. https://doi.org/10.1177/0363546508331137

- 48. de Vos RJ, Heijboer MP, Weinans H, Verhaar JA, van Schie JT, Tendon structure's lack of relation to clinical outcome after eccentric exercises in chronic midportion Achilles tendinopathy. J Sport Rehabil. 2012;21:34-43. https://doi.org/10.1123/jsr.21.1.34
- 49. de Vos RJ, Weir A, Tol JL, Verhaar JA, Weinans H, van Schie HT. No effects of PRP on ultrasonographic tendon structure and neovascularisation in chronic midportion Achilles tendinopathy. Br J Sports Med. 2011;45:387-392. https://doi.org/10.1136/bjsm.2010.076398
- 50. de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303:144-149. https://doi.org/10.1001/jama.2009.1986
- 51. De Zordo T, Chhem R, Smekal V, et al. Real-time sonoelastography: findings in patients with symptomatic Achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2010;31:394-400. https://doi. org/10.1055/s-0028-1109809
- **52.** Di Matteo B, Filardo G, Kon E, Marcacci M. Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review. Musculoskelet Surg. 2015;99:1-9. https://doi.org/10.1007/ s12306-014-0340-1
- 53. Dirrichs T, Quack V, Gatz M, Tingart M, Kuhl CK, Schrading S. Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol. 2016;23:1204-1213. https://doi.org/10.1016/j.
- 54. Divani K, Chan O, Padhiar N, et al. Site of maximum neovascularisation correlates with the site of pain in recalcitrant mid-tendon Achilles tendinopathy. Man Ther. 2010;15:463-468. https://doi.org/10.1016/j. math.2010.03.011
- 55. Docking SI, Cook J. Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC). Scand J Med Sci Sports. 2016;26:675-683. https://doi.org/10.1111/sms.12491
- 56. Docking SI, Rosengarten SD, Daffy J, Cook J. Structural integrity is decreased in both Achilles tendons in people with unilateral Achilles tendinopathy. J Sci Med Sport. 2015;18:383-387. https://doi.org/10.1016/j. jsams.2014.06.004
- 57. Dogramaci Y, Kalaci A, Kücükkübaş N, Inandı T, Esen E, Yanat AN. Validation of the VISA-A questionnaire for Turkish language: the VISA-A-Tr study. Br J Sports Med. 2011;45:453-455. https://doi.org/10.1136/ bjsm.2009.060236
- 58. Dowling GJ, Murley GS, Munteanu SE, et al. Dynamic foot function as a risk factor for lower limb overuse injury: a systematic review. J Foot Ankle Res. 2014;7:53. https://doi.org/10.1186/s13047-014-0053-6
- 59. Ebbesen BH, Mølgaard CM, Olesen JL, Gregersen HE, Simonsen O. No beneficial effect of Polidocanol treatment in Achilles tendinopathy: a randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. In press. https://doi.org/10.1007/s00167-017-4675-7
- **60.** Eickler R, Pomeranz SJ. Achilles tendinitis. J Surg Orthop Adv. 2015;24:198-202.
- 61. El Khoury L, Posthumus M, Collins M, Handley CJ, Cook J, Raleigh SM. Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, ADAM12 and TIMP2 genes and the risk of Achilles tendon pathology: a genetic association study. J Sci Med Sport. 2013;16:493-498. https://doi. org/10.1016/j.jsams.2013.02.006
- 62. El Khoury L, Ribbans WJ, Raleigh SM. MMP3 and TIMP2 gene variants as predisposing factors for Achilles tendon pathologies: attempted replication study in a British case-control cohort. Meta Gene. 2016;9:52-55. https://doi.org/10.1016/j.mgene.2016.03.007
- 63. Emerson C, Morrissey D, Perry M, Jalan R. Ultrasonographically detected changes in Achilles tendons and self reported symptoms in elite gymnasts compared with controls - an observational study. Man Ther. 2010;15:37-

- 42. https://doi.org/10.1016/j.math.2009.05.008
- **64.** Fahlström M, Lorentzon R, Alfredson H. Painful conditions in the Achilles tendon region in elite badminton players. *Am J Sports Med.* 2002;30:51-54. https://doi.org/10.1177/03635465020300012201
- 65. Filardo G, Di Matteo B, Kon E, Merli G, Marcacci M. Platelet-rich plasma in tendon-related disorders: results and indications. *Knee Surg Sports Traumatol Arthrosc*. In press. https://doi.org/10.1007/s00167-016-4261-4
- 66. Firth BL, Dingley P, Davies ER, Lewis JS, Alexander CM. The effect of kinesiotape on function, pain, and motoneuronal excitability in healthy people and people with Achilles tendinopathy. Clin J Sport Med. 2010;20:416-421. https://doi.org/10.1097/JSM.0b013e3181f479b0
- 67. Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol. 2014;24:1366-1375. https://doi.org/10.1007/s00330-014-3121-1
- Fordham S, Garbutt G, Lopes P. Epidemiology of injuries in adventure racing athletes. Br J Sports Med. 2004;38:300-303. https://doi.org/10.1136/bjsm.2002.003350
- Franceschi F, Papalia R, Paciotti M, et al. Obesity as a risk factor for tendinopathy: a systematic review. *Int J Endocrinol*. 2014;2014:670262. https:// doi.org/10.1155/2014/670262
- Franettovich Smith MM, Honeywill C, Wyndow N, Crossley KM, Creaby MW. Neuromotor control of gluteal muscles in runners with Achilles tendinopathy. Med Sci Sports Exerc. 2014;46:594-599. https://doi.org/10.1249/ MSS.00000000000000133
- Frizziero A, Trainito S, Oliva F, Nicoli Aldini N, Masiero S, Maffulli N. The role of eccentric exercise in sport injuries rehabilitation. *Br Med Bull*. 2014;110:47-75. https://doi.org/10.1093/bmb/ldu006
- 72. Gaida JE, Alfredson H, Forsgren S, Cook JL. A pilot study on biomarkers for tendinopathy: lower levels of serum TNF-α and other cytokines in females but not males with Achilles tendinopathy. BMC Sports Sci Med Rehabil. 2016;8:5. https://doi.org/10.1186/s13102-016-0026-0
- Gaida JE, Alfredson L, Kiss ZS, Wilson AM, Alfredson H, Cook JL. Dyslipidemia in Achilles tendinopathy is characteristic of insulin resistance. Med Sci Sports Exerc. 2009;41:1194-1197. https://doi.org/10.1249/ MSS.0b013e31819794c3
- **74.** Gaida JE, Ashe MC, Bass SL, Cook JL. Is adiposity an under-recognized risk factor for tendinopathy? A systematic review. *Arthritis Rheum*. 2009;61:840-849. https://doi.org/10.1002/art.24518
- **75.** Gaida JE, Bagge J, Purdam C, Cook J, Alfredson H, Forsgren S. Evidence of the TNF- α system in the human Achilles tendon: expression of TNF- α and TNF receptor at both protein and mRNA levels in the tenocytes. *Cells Tissues Organs*. 2012;196:339-352. https://doi.org/10.1159/000335475
- 76. Gajhede-Knudsen M, Ekstrand J, Magnusson H, Maffulli N. Recurrence of Achilles tendon injuries in elite male football players is more common after early return to play: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:763-768. https://doi.org/10.1136/bjsports-2013-092271
- 77. Galletti S, Oliva F, Masiero S, et al. Sonoelastography in the diagnosis of tendinopathies: an added value. *Muscles Ligaments Tendons J*. 2015;5:325-330. https://doi.org/10.11138/mltj/2015.5.4.325
- Gärdin A, Brismar TB, Movin T, Shalabi A. Dynamic contrast enhanced magnetic resonance imaging in chronic Achilles tendinosis. BMC Med Imaging. 2013;13:39. https://doi.org/10.1186/1471-2342-13-39
- Gärdin A, Movin T, Svensson L, Shalabi A. The long-term clinical and MRI results following eccentric calf muscle training in chronic Achilles tendinosis. Skeletal Radiol. 2010;39:435-442. https://doi.org/10.1007/

s00256-009-0798-3

- 80. Gärdin A, Rasinski P, Berglund J, Shalabi A, Schulte H, Brismar TB. T₂* relaxation time in Achilles tendinosis and controls and its correlation with clinical score. J Magn Reson Imaging. 2016;43:1417-1422. https://doi.org/10.1002/jmri.25104
- Gerdesmeyer L, Mittermayr R, Fuerst M, et al. Current evidence of extracorporeal shock wave therapy in chronic Achilles tendinopathy. *Int J Surg.* 2015;24:154-159. https://doi.org/10.1016/j.ijsu.2015.07.718
- 82. Gouveia-Figueira S, Nording ML, Gaida JE, Forsgren S, Alfredson H, Fowler CJ. Serum levels of oxylipins in Achilles tendinopathy: an exploratory study. PLoS One. 2015;10:e0123114. https://doi.org/10.1371/journal.pone.0123114
- 83. Grigg NL, Wearing SC, O'Toole JM, Smeathers JE. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise. Med Sci Sports Exerc. 2013;45:520-526. https://doi.org/10.1249/ MSS.0b013e31827795a7
- **84.** Grigg NL, Wearing SC, Smeathers JE. Achilles tendinopathy has an aberrant strain response to eccentric exercise. *Med Sci Sports Exerc*. 2012;44:12-17. https://doi.org/10.1249/MSS.0b013e318227fa8c
- 85. Grosse U, Syha R, Martirosian P, et al. Ultrashort echo time MR imaging with off-resonance saturation for characterization of pathologically altered Achilles tendons at 3 T. Magn Reson Med. 2013;70:184-192. https://doi.org/10.1002/mrm.24435
- **86.** Habets B, Smits HW, Backx FJG, van Cingel REH, Huisstede BMA. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: a cross-sectional study. *Phys Ther Sport*. 2017;25:55-61. https://doi.org/10.1016/j.ptsp.2016.09.008
- 87. Habets B, van Cingel RE. Eccentric exercise training in chronic mid-portion Achilles tendinopathy: a systematic review on different protocols. Scand J Med Sci Sports. 2015;25:3-15. https://doi.org/10.1111/sms.12208
- 88. Hay M, Patricios J, Collins R, et al. Association of type XI collagen genes with chronic Achilles tendinopathy in independent populations from South Africa and Australia. Br J Sports Med. 2013;47:569-574. https://doi.org/10.1136/bjsports-2013-092379
- 89. Heales LJ, Lim EC, Hodges PW, Vicenzino B. Sensory and motor deficits exist on the non-injured side of patients with unilateral tendon pain and disability—implications for central nervous system involvement: a systematic review with meta-analysis. Br J Sports Med. 2014;48:1400-1406. https://doi.org/10.1136/bjsports-2013-092535
- 90. Helfenstein-Didier C, Andrade RJ, Brum J, et al. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis. *Phys Med Biol*. 2016;61:2485-2496. https://doi.org/10.1088/0031-9155/61/6/2485
- **91.** Hoffmann A, Mamisch N, Buck FM, Espinosa N, Pfirrmann CW, Zanetti M. Oedema and fatty degeneration of the soleus and gastrocnemius muscles on MR images in patients with Achilles tendon abnormalities. *Eur Radiol*. 2011;21:1996-2003. https://doi.org/10.1007/s00330-011-2136-0
- 92. Holmes GB, Lin J. Etiologic factors associated with symptomatic Achilles tendinopathy. Foot Ankle Int. 2006;27:952-959. https://doi. org/10.1177/107110070602701115
- House C, Reece A, Roiz de Sa D. Shock-absorbing insoles reduce the incidence of lower limb overuse injuries sustained during Royal Marine training. *Mil Med*. 2013;178:683-689. https://doi.org/10.7205/ MILMED-D-12-00361
- Hutchison AM, Evans R, Bodger O, et al. What is the best clinical test for Achilles tendinopathy? Foot Ankle Surg. 2013;19:112-117. https://doi. org/10.1016/j.fas.2012.12.006
- 95. Hutchison AM, Pallister I, Evans RM, et al. Intense pulsed light treatment

- of chronic mid-body Achilles tendinopathy: a double blind randomised placebo-controlled trial. Bone Joint J. 2013;95-B:504-509. https://doi. org/10.1302/0301-620X.95B4.30558
- 96. Intziegianni K, Cassel M, Rauf S, et al. Influence of age and pathology on Achilles tendon properties during a single-leg jump. Int J Sports Med. 2016;37:973-978. https://doi.org/10.1055/s-0042-108198
- 97. Iversen JV, Bartels EM, Jørgensen JE, et al. Danish VISA-A questionnaire with validation and reliability testing for Danish-speaking Achilles tendinopathy patients. Scand J Med Sci Sports. 2016;26:1423-1427. https://doi. org/10.1111/sms.12576
- 98. Jewson JL, Lambert EA, Docking S, Storr M, Lambert GW, Gaida JE. Pain duration is associated with increased muscle sympathetic nerve activity in patients with Achilles tendinopathy. Scand J Med Sci Sports. 2017;27:1942-1949. https://doi.org/10.1111/sms.12820
- 99. Jewson JL, Lambert GW, Storr M, Gaida JE. The sympathetic nervous system and tendinopathy: a systematic review. Sports Med. 2015;45:727-743. https://doi.org/10.1007/s40279-014-0300-9
- 100. Jhingan S, Perry M, O'Driscoll G, et al. Thicker Achilles tendons are a risk factor to develop Achilles tendinopathy in elite professional soccer players. Muscles Ligaments Tendons J. 2011;1:51-56.
- 101. Johansson C. Injuries in elite orienteers. Am J Sports Med. 1986;14:410-415. https://doi.org/10.1177/036354658601400515
- 102. Kachlik D, Baca V, Cepelik M, et al. Clinical anatomy of the retrocalcaneal bursa. Surg Radiol Anat. 2008;30:347-353. https://doi.org/10.1007/ s00276-008-0335-4
- 103. Kaux JF, Delvaux F, Oppong-Kyei J, et al. Validity and reliability of the French translation of the VISA-A questionnaire for Achilles tendinopathy. Disabil Rehabil. 2016;38:2593-2599. https://doi.org/10.3109/09638288.2 016.1138553
- 104. Kayser R, Mahlfeld K, Heyde CE. Partial rupture of the proximal Achilles tendon: a differential diagnostic problem in ultrasound imaging. Br J Sports Med. 2005;39:838-842. https://doi.org/10.1136/ bjsm.2005.018416
- 105. Kim S, Yu J. Changes of gait parameters and lower limb dynamics in recreational runners with Achilles tendinopathy. J Sports Sci Med. 2015;14:284-289.
- 106. Klein EE, Weil L, Jr., Weil LS, Sr., Fleischer AE. Body mass index and Achilles tendonitis: a 10-year retrospective analysis. Foot Ankle Spec. 2013;6:276-282. https://doi.org/10.1177/1938640013489343
- 107. Knobloch K, Schreibmueller L, Kraemer R, Jagodzinski M, Vogt PM, Redeker J. Gender and eccentric training in Achilles mid-portion tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2010;18:648-655. https://doi. org/10.1007/s00167-009-1006-7
- 108. Kozlovskaia M, Vlahovich N, Ashton KJ, Hughes DC. Biomedical risk factors of Achilles tendinopathy in physically active people: a systematic review. Sports Med Open. 2017;3:20. https://doi.org/10.1186/ s40798-017-0087-y
- 109. Kraemer R, Knobloch K. A soccer-specific balance training program for hamstring muscle and patellar and Achilles tendon injuries: an intervention study in premier league female soccer. Am J Sports Med. 2009;37:1384-1393. https://doi.org/10.1177/0363546509333012
- 110. Kraemer R, Wuerfel W, Lorenzen J, Busche M, Vogt PM, Knobloch K. Analysis of hereditary and medical risk factors in Achilles tendinopathy and Achilles tendon ruptures: a matched pair analysis. Arch Orthop Trauma Surg. 2012;132:847-853. https://doi.org/10.1007/s00402-012-1476-9
- 111. Kragsnaes MS, Fredberg U, Stribolt K, Kjaer SG, Bendix K, Ellingsen T. Stereological quantification of immune-competent cells in baseline biopsy specimens from Achilles tendons: results from patients with chronic tendi-

- nopathy followed for more than 4 years, Am J Sports Med, 2014:42:2435-2445. https://doi.org/10.1177/0363546514542329
- 112. Krogh TP, Ellingsen T, Christensen R, Jensen P, Fredberg U. Ultrasoundguided injection therapy of Achilles tendinopathy with platelet-rich plasma or saline: a randomized, blinded, placebo-controlled trial. Am J Sports Med. 2016;44:1990-1997. https://doi.org/10.1177/0363546516647958
- 113. Krolo I, Visković K, Ikić D, Klarić-Custović R, Marotti M, Cicvara T. The risk of sports activities--the injuries of the Achilles tendon in sportsmen. Coll Antropol. 2007;31:275-278.
- 114. Kujala UM, Sarna S, Kaprio J. Cumulative incidence of Achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med. 2005;15:133-135.
- 115. Kulig K, Loudon JK, Popovich JM, Jr., Pollard CD, Winder BR. Dancers with Achilles tendinopathy demonstrate altered lower extremity takeoff kinematics. J Orthop Sports Phys Ther. 2011;41:606-613. https://doi. org/10.2519/jospt.2011.3580
- 116. Kvist M. Achilles tendon injuries in athletes. Ann Chir Gynaecol. 1991;80:188-201.
- 117. Lang TR, Cook J, Rio E, Gaida JE. What tendon pathology is seen on imaging in people who have taken fluoroquinolones? A systematic review. Fundam Clin Pharmacol. 2017;31:4-16. https://doi.org/10.1111/fcp.12228
- 118. Leach RE, James S, Wasilewski S. Achilles tendinitis. Am J Sports Med. 1981;9:93-98. https://doi.org/10.1177/036354658100900204
- 119. Legerlotz K. Jones ER. Screen HR. Rilev GP. Increased expression of IL-6 family members in tendon pathology. Rheumatology (Oxford). 2012;51:1161-1165. https://doi.org/10.1093/rheumatology/kes002
- 120. Lewis T, Cook J. Fluoroquinolones and tendinopathy: a guide for athletes and sports clinicians and a systematic review of the literature. J Athl Train. 2014;49:422-427. https://doi.org/10.4085/1062-6050-49.2.09
- 121. Longo UG, Rittweger J, Garau G, et al. No influence of age, gender, weight, height, and impact profile in Achilles tendinopathy in masters track and field athletes. Am J Sports Med. 2009;37:1400-1405. https://doi. org/10.1177/0363546509332250
- 122. Lopes AD, Hespanhol Junior LC, Yeung SS, Costa LO. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med. 2012;42:891-905. https://doi. org/10.2165/11631170-000000000-00000
- 123. Lorimer AV, Hume PA. Stiffness as a risk factor for Achilles tendon injury in running athletes. Sports Med. 2016;46:1921-1938. https://doi.org/10.1007/ s40279-016-0526-9
- 124. Lowes DA, Wallace C, Murphy MP, Webster NR, Galley HF. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Free Radic Res. 2009;43:323-328. https://doi. org/10.1080/10715760902736275
- 125. Luck MD, Gordon AG, Blebea JS, Dalinka MK. High association between accessory soleus muscle and Achilles tendonopathy. Skeletal Radiol. 2008;37:1129-1133. https://doi.org/10.1007/s00256-008-0554-0
- 126. MacDermid JC, Silbernagel KG. Outcome evaluation in tendinopathy: foundations of assessment and a summary of selected measures. J Orthop Sports Phys Ther. 2015;45:950-964. https://doi.org/10.2519/ jospt.2015.6054
- 127. Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB. Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sport Med. 2003;13:11-15.
- 128. Maffulli N, Wong J, Almekinders LC. Types and epidemiology of tendinopathy. Clin Sports Med. 2003;22:675-692. https://doi.org/10.1016/ S0278-5919(03)00004-8

- Magnan B, Bondi M, Pierantoni S, Samaila E. The pathogenesis of Achilles tendinopathy: a systematic review. Foot Ankle Surg. 2014;20:154-159. https://doi.org/10.1016/j.fas.2014.02.010
- **130.** Magnussen RA, Dunn WR, Thomson AB. Nonoperative treatment of midportion Achilles tendinopathy: a systematic review. *Clin J Sport Med*. 2009;19:54-64. https://doi.org/10.1097/JSM.0b013e31818ef090
- 131. Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes: a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43:267-286. https://doi.org/10.1007/s40279-013-0019-z
- **132.** Martin R. Considerations for differential diagnosis of an ankle sprain in the adolescent. *Orthop Phys Ther Pract*. 2004;16:21-22.
- 133. Masci L, Spang C, van Schie HT, Alfredson H. How to diagnose plantaris tendon involvement in midportion Achilles tendinopathy - clinical and imaging findings. BMC Musculoskelet Disord. 2016;17:97. https://doi. org/10.1186/s12891-016-0955-5
- 134. McAuliffe S, McCreesh K, Culloty F, Purtill H, O'Sullivan K. Can ultrasound imaging predict the development of Achilles and patellar tendinopathy? A systematic review and meta-analysis. Br J Sports Med. 2016;50:1516-1523. https://doi.org/10.1136/bjsports-2016-096288
- 135. McClure PW, Michener LA. Staged approach for rehabilitation classification: shoulder disorders (STAR-Shoulder). Phys Ther. 2015;95:791-800. https://doi.org/10.2522/ptj.20140156
- 136. Mehta SP, Fulton A, Quach C, Thistle M, Toledo C, Evans NA. Measurement properties of the Lower Extremity Functional Scale: a systematic review. J Orthop Sports Phys Ther. 2016;46:200-216. https://doi.org/10.2519/jospt.2016.6165
- 137. Morton S, Chan O, Webborn N, Pritchard M, Morrissey D. Tears of the fascia cruris demonstrate characteristic sonographic features: a case series analysis. *Muscles Ligaments Tendons J.* 2015;5:299-304. https://doi. org/10.11138/mltj/2015.5.4.299
- 138. Mucha MD, Caldwell W, Schlueter EL, Walters C, Hassen A. Hip abductor strength and lower extremity running related injury in distance runners: a systematic review. J Sci Med Sport. 2017;20:349-355. https://doi. org/10.1016/j.jsams.2016.09.002
- 139. Munteanu SE, Scott LA, Bonanno DR, et al. Effectiveness of customised foot orthoses for Achilles tendinopathy: a randomised controlled trial. Br J Sports Med. 2015;49:989-994. https://doi.org/10.1136/ bjsports-2014-093845
- 140. Nielsen RO, Rønnow L, Rasmussen S, Lind M. A prospective study on time to recovery in 254 injured novice runners. PLoS One. 2014;9:e99877. https://doi.org/10.1371/journal.pone.0099877
- 141. Nuri L, Obst SJ, Newsham-West R, Barrett RS. The tendinopathic Achilles tendon does not remain iso-volumetric upon repeated loading: insights from 3D ultrasound. *J Exp Biol.* 2017;220:3053-3061. https://doi.org/10.1242/jeb.159764
- 142. Olewnik L, Wysiadecki G, Polguj M, Topol M. Anatomic study suggests that the morphology of the plantaris tendon may be related to Achilles tendonitis. Surg Radiol Anat. 2017;39:69-75. https://doi.org/10.1007/ s00276-016-1682-1
- 143. Ooi CC, Schneider ME, Malliaras P, Chadwick M, Connell DA. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. *Ultrasound Med Biol.* 2015;41:15-25. https://doi.org/10.1016/j.ultrasmedbio.2014.08.019
- 144. Owens RF, Jr., Ginnetti J, Conti SF, Latona C. Clinical and magnetic resonance imaging outcomes following platelet rich plasma injection for chronic midsubstance Achilles tendinopathy. Foot Ankle Int. 2011;32:1032-1039. https://doi.org/10.3113/FAI.2011.1032

- **145.** Paavola M, Kannus P, Paakkala T, Pasanen M, Järvinen M. Long-term prognosis of patients with Achilles tendinopathy. *Am J Sports Med*. 2000;28:634-642. https://doi.org/10.1177/03635465000280050301
- **146.** Pearce CJ, Ismail M, Calder JD. Is apoptosis the cause of noninsertional Achilles tendinopathy? *Am J Sports Med*. 2009;37:2440-2444. https://doi.org/10.1177/0363546509340264
- 147. Pearson J, Rowlands D, Highet R. Autologous blood injection to treat Achilles tendinopathy? A randomized controlled trial. J Sport Rehabil. 2012;21:218-224. https://doi.org/10.1123/jsr.21.3.218
- **148.** Petersen W, Welp R, Rosenbaum D. Chronic Achilles tendinopathy: a prospective randomized study comparing the therapeutic effect of eccentric training, the AirHeel brace, and a combination of both. *Am J Sports Med*. 2007;35:1659-1667. https://doi.org/10.1177/0363546507303558
- **149.** Phillips B, Ball C, Sackett D, et al. Oxford Centre for Evidence-based Medicine Levels of Evidence (March 2009). Available at: http://www.cebm.net/index.aspx?o=1025. Accessed August 4, 2009.
- 150. Pingel J, Fredberg U, Qvortrup K, et al. Local biochemical and morphological differences in human Achilles tendinopathy: a case control study. BMC Musculoskelet Disord. 2012;13:53. https://doi. org/10.1186/1471-2474-13-53
- **151.** Pingel J, Harrison A, Simonsen L, Suetta C, Bülow J, Langberg H. The microvascular volume of the Achilles tendon is increased in patients with tendinopathy at rest and after a 1-hour treadmill run. *Am J Sports Med*. 2013;41:2400-2408. https://doi.org/10.1177/0363546513498988
- **152.** Pingel J, Petersen MC, Fredberg U, et al. Inflammatory and metabolic alterations of Kager's fat pad in chronic Achilles tendinopathy. *PLoS One*. 2015;10:e0127811. https://doi.org/10.1371/journal.pone.0127811
- **153.** Plinsinga ML, van Wilgen CP, Brink MS, et al. Patellar and Achilles tendinopathies are predominantly peripheral pain states: a blinded case control study of somatosensory and psychological profiles. *Br J Sports Med*. 2018;52:284-291. https://doi.org/10.1136/bjsports-2016-097163
- 154. Pollock N, Dijkstra P, Calder J, Chakraverty R. Plantaris injuries in elite UK track and field athletes over a 4-year period: a retrospective cohort study. Knee Surg Sports Traumatol Arthrosc. 2016;24:2287-2292. https://doi.org/10.1007/s00167-014-3409-3
- 155. Posthumus M, Collins M, Cook J, et al. Components of the transforming growth factor-β family and the pathogenesis of human Achilles tendon pathology—a genetic association study. Rheumatology (Oxford). 2010;49:2090-2097. https://doi.org/10.1093/rheumatology/keq072
- **156.** Posthumus M, September AV, Schwellnus MP, Collins M. Investigation of the Sp1-binding site polymorphism within the COL1A1 gene in participants with Achilles tendon injuries and controls. *J Sci Med Sport*. 2009;12:184-189. https://doi.org/10.1016/j.jsams.2007.12.006
- 157. Rahim M, El Khoury LY, Raleigh SM, et al. Human genetic variation, sport and exercise medicine, and Achilles tendinopathy: role for angiogenesisassociated genes. OMICS. 2016;20:520-527. https://doi.org/10.1089/ omi.2016.0116
- 158. Ram R, Meeuwisse W, Patel C, Wiseman DA, Wiley JP. The limited effectiveness of a home-based eccentric training for treatment of Achilles tendinopathy. Clin Invest Med. 2013;36:E197-E206.
- 159. Redler LH, Thompson SA, Hsu SH, Ahmad CS, Levine WN. Plateletrich plasma therapy: a systematic literature review and evidence for clinical use. *Phys Sportsmed*. 2011;39:42-51. https://doi.org/10.3810/psm.2011.02.1861
- 160. Reiman M, Burgi C, Strube E, et al. The utility of clinical measures for the diagnosis of Achilles tendon injuries: a systematic review with meta-analysis. J Athl Train. 2014;49:820-829. https://doi. org/10.4085/1062-6050-49.3.36

- 161. Richards PJ. Braid JC. Carmont MR. Maffulli N. Achilles tendon ossification: pathology, imaging and aetiology. Disabil Rehabil. 2008;30:1651-1665. https://doi.org/10.1080/09638280701785866
- 162. Richards PJ, McCall IW, Day C, Belcher J, Maffulli N. Longitudinal microvascularity in Achilles tendinopathy (power Doppler ultrasound, magnetic resonance imaging time-intensity curves and the Victorian Institute of Sport Assessment-Achilles questionnaire): a pilot study. Skeletal Radiol. 2010;39:509-521. https://doi.org/10.1007/s00256-009-0772-0
- 163. Rickaby R, El Khoury L, Ribbans WJ, Raleigh SM. Variation within three apoptosis associated genes as potential risk factors for Achilles tendinopathy in a British based case-control cohort. Gene. 2015;571:167-171. https://doi.org/10.1016/j.gene.2015.06.010
- 164. Rolf C, Movin T. Etiology, histopathology, and outcome of surgery in achillodynia. Foot Ankle Int. 1997;18:565-569. https://doi. org/10.1177/107110079701800906
- 165. Rompe JD, Furia J, Maffulli N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2009;37:463-470. https://doi. org/10.1177/0363546508326983
- 166. Rompe JD, Furia JP, Maffulli N. Mid-portion Achilles tendinopathy current options for treatment. Disabil Rehabil. 2008;30:1666-1676. https:// doi.org/10.1080/09638280701785825
- 167. Rompe JD, Nafe B, Furia JP, Maffulli N. Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. Am J Sports Med. 2007;35:374-383. https://doi.org/10.1177/0363546506295940
- 168. Rowe V, Hemmings S, Barton C, Malliaras P, Maffulli N, Morrissey D. Conservative management of midportion Achilles tendinopathy: a mixed methods study, integrating systematic review and clinical reasoning. Sports Med. 2012;42:941-967. https://doi. org/10.2165/11635410-000000000-00000
- 169. Sadoghi P, Rosso C, Valderrabano V, Leithner A, Vavken P. The role of platelets in the treatment of Achilles tendon injuries. J Orthop Res. 2013;31:111-118. https://doi.org/10.1002/jor.22199
- 170. Sanders TG, Rathur SK. Impingement syndromes of the ankle. Magn Reson Imaging Clin N Am. 2008;16:29-38. https://doi.org/10.1016/j. mric.2008.02.005
- 171. Saunders CJ, van der Merwe L, Cook J, Handley CJ, Collins M, September AV. Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of Achilles tendinopathy. J Orthop Res. 2015;33:898-903. https://doi.org/10.1002/jor.22820
- 172. Saunders CJ, Van Der Merwe L, Cook J, Handley CJ, Collins M, September AV. Variants within the COMP and THBS2 genes are not associated with Achilles tendinopathy in a case-control study of South African and Australian populations. J Sports Sci. 2014;32:92-100. https://doi.org/10.1080/02 640414.2013.807351
- 173. Saunders CJ, van der Merwe L, Posthumus M, et al. Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations. J Orthop Res. 2013;31:632-637. https://doi.org/10.1002/ jor.22278
- 174. Saxena A, Ramdath S, Jr., O'Halloran P, Gerdesmeyer L, Gollwitzer H. Extra-corporeal pulsed-activated therapy ("EPAT" sound wave) for Achilles tendinopathy: a prospective study. J Foot Ankle Surg. 2011;50:315-319. https://doi.org/10.1053/j.jfas.2011.01.003
- 175. Scholes M, Stadler S, Connell D, et al. Men with unilateral Achilles tendinopathy have impaired balance on the symptomatic side. J Sci Med Sport. 2018;21:479-482. https://doi.org/10.1016/j.jsams.2017.09.594
- 176. Scott RT, Hyer CF, Granata A. The correlation of Achilles tendinopathy and body mass index. Foot Ankle Spec. 2013;6:283-285. https://doi.

org/10.1177/1938640013490019

- 177. Semciw A, Neate R, Pizzari T. Running related gluteus medius function in health and injury: a systematic review with meta-analysis. J Electromyogr Kinesiol. 2016;30:98-110. https://doi.org/10.1016/j.jelekin.2016.06.005
- 178. Sengkerij PM, de Vos RJ, Weir A, van Weelde BJ, Tol JL. Interobserver reliability of neovascularization score using power Doppler ultrasonography in midportion Achilles tendinopathy. Am J Sports Med. 2009;37:1627-1631. https://doi.org/10.1177/0363546509332255
- 179. September AV, Cook J, Handley CJ, van der Merwe L, Schwellnus MP, Collins M. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med. 2009;43:357-365. https:// doi.org/10.1136/bjsm.2008.048793
- 180. September AV, Nell EM, O'Connell K, et al. A pathway-based approach investigating the genes encoding interleukin- 1β , interleukin-6 and the interleukin-1 receptor antagonist provides new insight into the genetic susceptibility of Achilles tendinopathy. Br J Sports Med. 2011;45:1040-1047. https://doi.org/10.1136/bjsm.2010.076760
- 181. Shultz S, Olszewski A, Ramsey O, Schmitz M, Wyatt V, Cook C. A systematic review of outcome tools used to measure lower leg conditions. Int J Sports Phys Ther. 2013;8:838-848.
- 182. Silbernagel KG, Brorsson A, Lundberg M. The majority of patients with Achilles tendinopathy recover fully when treated with exercise alone: a 5-year follow-up. Am J Sports Med. 2011;39:607-613. https://doi. org/10.1177/0363546510384789
- 183. Sobhani S, Dekker R, Postema K, Dijkstra PU. Epidemiology of ankle and foot overuse injuries in sports: a systematic review. Scand J Med Sci Sports. 2013;23:669-686. https://doi. org/10.1111/j.1600-0838.2012.01509.x
- 184. Sobrino FJ, de la Cuadra C, Guillén P. Overuse injuries in professional ballet: injury-based differences among ballet disciplines. Orthop J Sports Med. 2015;3:2325967115590114. https://doi. org/10.1177/2325967115590114
- 185. Spang C, Alfredson H, Ferguson M, Roos B, Bagge J, Forsgren S. The plantaris tendon in association with mid-portion Achilles tendinosis tendinosis-like morphological features and presence of a non-neuronal cholinergic system. Histol Histopathol. 2013;28:623-632. https://doi. org/10.14670/HH-28.623
- 186. Spang C, Harandi VM, Alfredson H, Forsgren S. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy. J Musculoskelet Neuronal Interact. 2015:15:197-206.
- 187. Stecco A, Busoni F, Stecco C, et al. Comparative ultrasonographic evaluation of the Achilles paratenon in symptomatic and asymptomatic subjects: an imaging study. Surg Radiol Anat. 2015;37:281-285. https://doi. org/10.1007/s00276-014-1338-y
- 188. Steinberg N, Dar G, Dunlop M, Gaida JE. The relationship of hip muscle performance to leg, ankle and foot injuries: a systematic review. Phys Sportsmed. 2017;45:49-63. https://doi.org/10.1080/00913847.2017.12803
- 189. Stephenson AL, Wu W, Cortes D, Rochon PA. Tendon injury and fluoroquinolone use: a systematic review. Drug Saf. 2013;36:709-721. https://doi. org/10.1007/s40264-013-0089-8
- 190. Stevens M, Tan CW. Effectiveness of the Alfredson protocol compared with a lower repetition-volume protocol for midportion Achilles tendinopathy: a randomized controlled trial. J Orthop Sports Phys Ther. 2014;44:59-67. https://doi.org/10.2519/jospt.2014.4720
- 191. Sunding K, Fahlström M, Werner S, Forssblad M, Willberg L. Evaluation of Achilles and patellar tendinopathy with greyscale ultrasound and colour

- Doppler: using a four-grade scale. *Knee Surg Sports Traumatol Arthrosc.* 2016;24:1988-1996. https://doi.org/10.1007/s00167-014-3270-4
- 192. Sussmilch-Leitch SP, Collins NJ, Bialocerkowski AE, Warden SJ, Crossley KM. Physical therapies for Achilles tendinopathy: systematic review and meta-analysis. J Foot Ankle Res. 2012;5:15. https://doi. org/10.1186/1757-1146-5-15
- 193. Syha R, Springer F, Würslin C, et al. Tendinopathy of the Achilles tendon: volume assessed by automated contour detection in submillimeter isotropic 3-dimensional magnetic resonance imaging data sets recorded at a field strength of 3 T. J Comput Assist Tomogr. 2015;39:250-256. https://doi.org/10.1097/RCT.00000000000000203
- 194. Taylor J, Dunkerley S, Silver D, et al. Extracorporeal shockwave therapy (ESWT) for refractory Achilles tendinopathy: a prospective audit with 2-year follow up. Foot (Edinb). 2016;26:23-29. https://doi.org/10.1016/j. foot.2015.08.007
- **195.** Tompra N, van Dieën JH, Coppieters MW. Central pain processing is altered in people with Achilles tendinopathy. *Br J Sports Med*. 2016;50:1004-1007. https://doi.org/10.1136/bjsports-2015-095476
- 196. Turnilty S, Mani R, Baxter GD. Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial. *Lasers Med Sci*. 2016;31:127-135. https://doi.org/10.1007/s10103-015-1840-4
- 197. Turnilty S, McDonough S, Hurley DA, Baxter GD. Clinical effectiveness of low-level laser therapy as an adjunct to eccentric exercise for the treatment of Achilles' tendinopathy: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93:733-739. https://doi.org/10.1016/j.apmr.2011.08.049
- 198. Unlu MC, Kivrak A, Kayaalp ME, Birsel O, Akgun I. Peritendinous injection of platelet-rich plasma to treat tendinopathy: a retrospective review. Acta Orthop Traumatol Turc. 2017;51:482-487. https://doi.org/10.1016/j.aott.2017.10.003
- 199. van der Plas A, de Jonge S, de Vos RJ, et al. A 5-year follow-up study of Alfredson's heel-drop exercise programme in chronic midportion Achilles tendinopathy. Br J Sports Med. 2012;46:214-218. https://doi.org/10.1136/ bjsports-2011-090035
- 200. Van Ginckel A, Thijs Y, Hesar NG, et al. Intrinsic gait-related risk factors for Achilles tendinopathy in novice runners: a prospective study. Gait Posture. 2009;29:387-391. https://doi.org/10.1016/j.gaitpost.2008.10.058
- **201.** van Schie HT, de Vos RJ, de Jonge S, et al. Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach. *Br J Sports Med.* 2010;44:1153-1159. https://doi.org/10.1136/bjsm.2009.061010
- 202. Vaughn NH, Stepanyan H, Gallo RA, Dhawan A. Genetic factors in tendon injury: a systematic review of the literature. Orthop J Sports Med. 2017;5:2325967117724416. https://doi.org/10.1177/2325967117724416
- 203. Verrall G, Schofield S, Brustad T. Chronic Achilles tendinopathy treated with eccentric stretching program. Foot Ankle Int. 2011;32:843-849. https://doi.org/10.3113/FAI.2011.0843
- 204. Wang HK, Lin KH, Wu YK, Chi SC, Shih TT, Huang YC. Evoked spinal reflexes and force development in elite athletes with middle-portion Achilles tendinopathy. J Orthop Sports Phys Ther. 2011;41:785-794. https://doi.

- org/10.2519/jospt.2011.3564
- 205. Wetke E, Johannsen F, Langberg H. Achilles tendinopathy: a prospective study on the effect of active rehabilitation and steroid injections in a clinical setting. Scand J Med Sci Sports. 2015;25:e392-e399. https://doi. org/10.1111/sms.12326
- 206. Wheeler PC, Mahadevan D, Bhatt R, Bhatia M. A comparison of two different high-volume image-guided injection procedures for patients with chronic noninsertional Achilles tendinopathy: a pragmatic retrospective cohort study. *J Foot Ankle Surg.* 2016;55:976-979. https://doi.org/10.1053/j.jfas.2016.04.017
- 207. Woods C, Hawkins R, Hulse M, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of preseason injuries. *Br J Sports Med*. 2002;36:436-441; discussion 441. https://doi.org/10.1136/bjsm.36.6.436
- 208. Yang X, Coleman DP, Pugh ND, Nokes LD. A novel 3-D power Doppler ultrasound approach to the quantification of Achilles tendon neovascularity. Ultrasound Med Biol. 2011;37:1046-1055. https://doi.org/10.1016/j. ultrasmedbio.2011.04.008
- 209. Yang X, Coleman DP, Pugh ND, Nokes LD. The volume of the neo-vascularity and its clinical implications in Achilles tendinopathy. Ultrasound Med Biol. 2012;38:1887-1895. https://doi.org/10.1016/j.ultrasmedbio.2012.07.002
- 210. Yang X, Pugh ND, Coleman DP, Nokes LD. Are Doppler studies a useful method of assessing neovascularization in human Achilles tendinopathy? A systematic review and suggestions for optimizing machine settings. J Med Eng Technol. 2010;34:365-372. https://doi.org/10.3109/03091902.2010.497892
- 211. Yasui Y, Tonogai I, Rosenbaum AJ, Shimozono Y, Kawano H, Kennedy JG. The risk of Achilles tendon rupture in the patients with Achilles tendinopathy: healthcare database analysis in the United States. *Biomed Res Int*. 2017;2017:7021862. https://doi.org/10.1155/2017/7021862
- 212. Yelland MJ, Sweeting KR, Lyftogt JA, Ng SK, Scuffham PA, Evans KA. Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: a randomised trial. *Br J Sports Med*. 2011;45:421-428. https://doi.org/10.1136/bjsm.2009.057968
- 213. Yeo A, Kendall N, Jayaraman S. Ultrasound-guided dry needling with percutaneous paratenon decompression for chronic Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2016;24:2112-2118. https://doi. org/10.1007/s00167-014-3458-7
- **214.** Yu J. Comparison of lower limb muscle activity during eccentric and concentric exercises in runners with Achilles tendinopathy. *J Phys Ther Sci.* 2014;26:1351-1353. https://doi.org/10.1589/jpts.26.1351
- 215. Zhang BM, Zhong LW, Xu SW, Jiang HR, Shen J. Acupuncture for chronic Achilles tendnopathy: a randomized controlled study. *Chin J Integr Med*. 2013;19:900-904. https://doi.org/10.1007/s11655-012-1218-4

MORE INFORMATION WWW.JOSPT.ORG

APPENDIX A

SEARCH STRATEGIES FOR ALL DATABASES SEARCHED

Limits: 2009 to present (05/11/2015); human; English (published CPG search included articles published from February 1, 2009 to present)

PubMed

History: 05/12/2015

Search	Add to Builder	Query	Items Found, n	Time
#21	Add	Search (#18 not #2) Filters: Publication date from 2009/01/01; English	601	12:50:43
#19	Add	Search (#18 not #2)	1424	12:50:43
#18	Add	Search (#16 or #17)	1515	12:49:05
#17	Add	Search ("achilles tendon"[MeSH Terms] OR ("achilles"[All Fields] AND "tendon"[All Fields]) OR "achilles tendon"[All Fields] OR "achilles"[All Fields]) AND ("tendinopathy"[MeSH Terms] OR "tendinopathy"[All Fields])	1425	11:31:17
#16	Add	Search ("achilles tendon" [MeSH Terms] OR ("achilles" [All Fields] AND "tendon" [All Fields]) OR "achilles tendon" [All Fields] OR "achilles" [All Fields]) AND ("tendinopathy" [MeSH Terms] OR "tendinopathy" [All Fields] OR "tendinitis" [All Fields])	1515	11:30:50
#2	Add	Search (animal not human)	3735987	09:46:42

Cochrane

Search Name: Achilles CPG Cochrane 05122015

Date Run: 12/05/15 16:09:42.256

Description: ID

Search hits: #1. achilles and (tendinitis or tendino* or tendono* or paratendino* or paratendono* or pantendino* or Pantendono*):ti,ab,kw

Publication Year from 2009 to 2015 (Word variations have been searched)

CINAHL

Tuesday, May 12, 2015 11:48:18 AM

Number	Query	Limiters/Expanders	Last Run Via
S4	S1 OR S2	Limiters - Published Date: 20090101-; English Language; Human Search modes - Find all my search terms	Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL
S3	S1 OR S2	Search modes - Find all my search terms	Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL
S2	achilles AND tendono* OR tendino* OR pantendino* OR pantendono* OR para- tendino* OR paratendono*	Search modes - Find all my search terms	Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL
S1	(MH "Achilles Tendinopathy")	Search modes - Find all my search terms	Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL

APPENDIX A

PEDro

Achilles AND tend* from 2009 forward

"Update" search strategies (May 15, 2015-April 12, 2016)

PEDro search run on 4/12/2016 and Update searches from 4/12/2016 to 11/18/2017

Achilles AND tend* from 5/13/2015 forward

Achilles AND tend* from 4/12/2016 forward

PubMed Search

Run 4/12/2016

Search	Query
#5	Search (#2 NOT #1) AND 2015/05/12:2016 [edat] Filters: English
#4	Search (#2 NOT #1) Filters: English
#3	Search (#2 NOT #1)
#2	Search (("achilles tendon" [MeSH Terms] OR ("achilles" [All Fields] AND "tendon" [All Fields]) OR "achilles tendon" [All Fields] OR "achilles" [All Fields]) AND ("tendinopathy" [MeSH Terms] OR "tendinopathy" [All Fields] OR "tendinitis" [All Fields]))
#1	Search animal NOT human

Update searches from 4/12/2016 to 11/18/2017

PubMed

Search	Query	Items Found, n
#5	Search (#2 NOT #1) Filters: Publication date from 2016/04/01 to 2017/11/18; English	245
#4	Search (#2 NOT #1) Filters: English	1617
#3	Search (#2 NOT #1)	1816
#2	Search (("achilles tendon" [MeSH Terms] OR ("achilles" [All Fields] AND "tendon" [All Fields]) OR "achilles tendon" [All Fields] OR "achilles" [All Fields]) AND ("tendinopathy" [MeSH Terms] OR "tendinopathy" [All Fields] OR "tendinitis" [All Fields]))	1930
#1	Search animal NOT human	4167941

CINAHL Search

Run on 4/12/2016

Number	Query	Limiters/Expanders
S3	(S1 OR S2) AND EM 20150513-	Limiters - English Language; Human Search modes - Find all my search terms
S2	achilles AND (tendono* OR tendino* OR pantendino* OR pantendono* OR paratendino* OR paratendono*)	Search modes - Find all my search terms
S1	(MH "Achilles Tendinopathy")	Search modes - Find all my search terms

CINAHL

(Updated Searches From 4/12/2016 to 11/18/2017)

Search	Query	Items Found, n
S3	(S1 OR S2) Limiters - Published Date: 20160401-20171131; Language: English Search modes - Find all my search terms	87
S2	achilles AND (tendono* OR tendino* OR pantendino* OR pantendono* OR paratendino* OR paratendono*)	874
	Search modes - Find all my search terms	
S1	(MH "Achilles Tendinopathy") Search modes - Find all my search terms	544

APPENDIX A

Cochrane Search

Run on 4/12/2016

achilles and (tendinitis or tendino* or tendono* or paratendino* or paratendono* or pantendino* or Pantendono*):ti,ab,kw Publication Year from 2015 to 2016

Cochrane

(Updated Searches From 4/12/2016 to 11/18/2017)

Search	Query	Items Found, n
	achilles and (tendinitis or tendino* or tendono* or paratendino* or paratendono* or	1 review, 35 trials
	pantendino* or Pantendono*):ti,ab,kw Publication Year from 2016 to 2017	

APPENDIX B

SEARCH RESULTS

Database	Platform	Original Date Conducted	Original Results, n	2016 Update Date Conducted	2016 Update Results, n	2017 Update Date Conducted	2017 Update Results, n
MEDLINE	PubMed	5/12/2015	601	4/12/2016 (from Entrez date 5/13/2015)	112	11/18/2017 (from Entrez date 4/12/2017)	245
Cochrane Library	Wiley	5/12/2015	69 Cochrane reviews (4) Other reviews (12) Trials (52) Economic evaluations (1)	4/12/2016	10	11/18/2017 (year 2016-2017)	1 review 35 trials
CINAHL	EBSC0	5/12/2015	392	4/12/2016	9	11/18/2017	87
PEDro	CEBP	5/12/2015	45	4/12/2016 (new records added from May 13, 2015 to current)	9	11/18/2017	9
Total			1107		140		377
Total with duplicates removed			993 (duplicates, 114)		129 (dupli- cates, 11)		287 (duplicates, 90)

APPENDIX C

ARTICLE INCLUSION AND EXCLUSION CRITERIA

I. Article Characteristics

Include:

- English
- Published from 2009 to present (published CPG search included) articles published up to February 1, 2009)
- · Articles reporting analysis of data: systematic reviews, meta-analyses, experimental and quasi-experimental, cohort, case series (n≥10), and cross-sectional studies

Exclude:

- · Study protocols
- · Abstracts, press reports, newsletters, editorial letters
- Articles published in non-peer-reviewed publications (eg, theses)
- Case reports (1 patient per case) and case series with fewer than 10 patients

II. Patient/Participant Characteristics

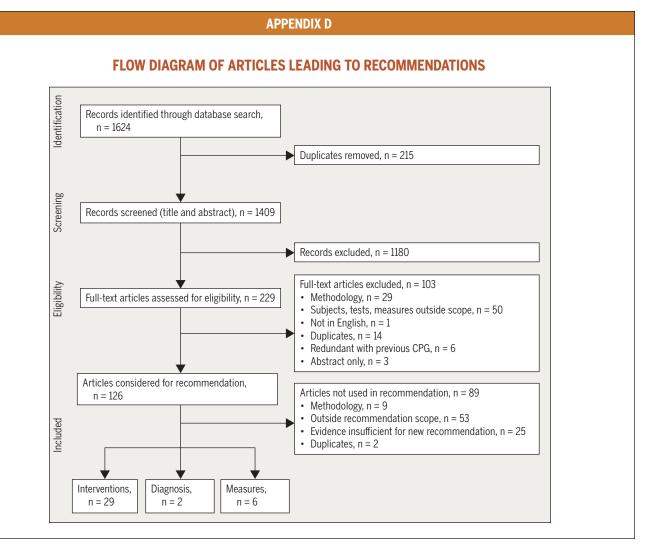
Include:

- Studies using data from humans
- Participants over 16 years of age (if mixed, the mean should be over 16 years)
- Participants with Achilles tendinitis, tendinopathy, tendinosis
- If the article reports on Achilles tendinopathy along with other conditions, then there must be at least enough patients (greater than 15 in each group) with Achilles tendinopathy AND the results must be reported for Achilles tendinopathy separately

Exclude:

Articles on healthy/normal participants

III. Topics Included


A. For evidence update

- Prevalence
- Pathoanatomic features: the functional anatomy of the ankle and foot relevant to Achilles tendinopathy
- · Risk factors
 - Intrinsic (eg, decreased dorsiflexion range of motion, subtalar motion, plantar flexion strength, pronation, and health conditions/comorbidities such as obesity, hypertension, hyperlipidemia, and diabetes)
 - Extrinsic (eg, training characteristics, environmental factors, equipment-related factors)
- Prognosis
- · Imaging studies

B. For formal systematic review

- · Classification systems, including but not limited to Curwin and Stanish, Nirschl Pain Phase Scale of Athletic Overuse Injuries, and Puffer and Zachazewski scale
- Tests and measures for diagnosis of Achilles tendinopathy within the scope of physical therapist practice, including but not limited to Achilles tendon palpation test, plantar flexion range of motion, unilateral heel-raise test, the arc sign, Victorian Institute of Sport Assessment-Achilles, Foot and Ankle Ability Measure, Royal London Hospital test
- Differential diagnosis, including but not limited to acute Achilles rupture, partial Achilles tear, retrocalcaneal bursitis, posterior ankle impingement, sural nerve neuroma or irritation, os trigonum syndrome, accessory soleus, Achilles tendon ossification, systemic inflammatory disease, and insertional Achilles tendinopathy
- Measurement properties of outcome measures relevant for Achilles tendinopathy, including but not limited to measures assessing:
- Body structures and function
 - · Truncated arch height ratio
 - Arc sign
 - · Royal London Hospital test
 - Forefoot alignment
 - · Achilles tendon palpation test

 - Range of motion (dorsiflexion, plantar flexion, inversion, eversion)
 - · Plantar flexion strength
 - · Plantar flexion endurance
- Activity (eg, the Silbernagel battery)
- Participation
- Interventions within the scope of practice of physical therapists, including but not limited to:
 - Eccentric loading or other exercise
 - Low-level laser therapy
 - Iontophoresis
 - Stretching
 - Foot orthoses
 - Manual therapy
 - **Taping**
 - Heel lifts
 - Shockwave

APPENDIX E

ARTICLES INCLUDED IN RECOMMENDATIONS BY TOPIC

Diagnosis

- Hutchison AM, Evans R, Bodger O, et al. What is the best clinical test for Achilles tendinopathy? *Foot Ankle Surg.* 2013;19:112-117. https://doi.org/10.1016/j.fas.2012.12.006
- Reiman M, Burgi C, Strube E, et al. The utility of clinical measures for the diagnosis of Achilles tendon injuries: a systematic review with meta-analysis. *J Athl Train*. 2014;49:820-829. https://doi.org/10.4085/1062-6050-49.3.36

Examination

Outcome Measures – Activity Limitations/Self-Reported Measures

- Dogramaci Y, Kalaci A, Kücükkübaş N, Inandı T, Esen E, Yanat AN. Validation of the VISA-A questionnaire for Turkish language: the VISA-A-Tr study. *Br J Sports Med*. 2011;45:453-455. https://doi.org/10.1136/bjsm.2009.060236
- Iversen JV, Bartels EM, Jørgensen JE, et al. Danish VISA-A questionnaire with validation and reliability testing for Danish-speaking Achilles tendinopathy patients. *Scand J Med Sci Sports*. 2016;26:1423-1427. https://doi.org/10.1111/sms.12576
- Kaux JF, Delvaux F, Oppong-Kyei J, et al. Validity and reliability of the French translation of the VISA-A questionnaire for Achilles tendinopathy. *Disabil Rehabil*. 2016;38:2593-2599. https://doi.org/10.3 109/09638288.2016.1138553
- Mehta SP, Fulton A, Quach C, Thistle M, Toledo C, Evans NA. Measurement properties of the Lower Extremity Functional Scale: a systematic review. *J Orthop Sports Phys Ther*. 2016;46:200-216. https://doi.org/10.2519/jospt.2016.6165
- Shultz S, Olszewski A, Ramsey O, Schmitz M, Wyatt V, Cook C. A systematic review of outcome tools used to measure lower leg conditions. *Int J Sports Phys Ther.* 2013;8:838-848.

Activity Limitations - Physical Performance Measures

MacDermid JC, Silbernagel KG. Outcome evaluation in tendinopathy: foundations of assessment and a summary of selected measures. *J Orthop Sports Phys Ther*. 2015;45:950-964. https://doi.org/10.2519/jospt.2015.6054

INTERVENTIONS

Exercise

- Beyer R, Kongsgaard M, Hougs Kjaer B, Øhlenschlæger T, Kjaer M, Magnusson SP. Heavy slow resistance versus eccentric training as treatment for Achilles tendinopathy: a randomized controlled trial. *Am J Sports Med*. 2015;43:1704-1711. https://doi.org/10.1177/0363546515584760
- de Jonge S, de Vos RJ, Weir A, et al. One-year follow-up of plateletrich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. *Am J Sports Med*. 2011;39:1623-1629. https://doi.org/10.1177/0363546511404877

- de Vos RJ, Heijboer MP, Weinans H, Verhaar JA, van Schie JT. Tendon structure's lack of relation to clinical outcome after eccentric exercises in chronic midportion Achilles tendinopathy. *J Sport Rehabil*. 2012;21:34-43. https://doi.org/10.1123/jsr.21.1.34
- de Vos RJ, Weir A, Tol JL, Verhaar JA, Weinans H, van Schie HT. No effects of PRP on ultrasonographic tendon structure and neovascularisation in chronic midportion Achilles tendinopathy. *Br J Sports Med*. 2011;45:387-392. https://doi.org/10.1136/bjsm.2010.076398
- de Vos RJ, Weir A, van Schie HT, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. *JAMA*. 2010;303:144-149. https://doi.org/10.1001/jama.2009.1986
- Frizziero A, Trainito S, Oliva F, Nicoli Aldini N, Masiero S, Maffulli N. The role of eccentric exercise in sport injuries rehabilitation. *Br Med Bull*. 2014;110:47-75. https://doi.org/10.1093/bmb/ldu006
- Habets B, van Cingel RE. Eccentric exercise training in chronic midportion Achilles tendinopathy: a systematic review on different protocols. Scand J Med Sci Sports. 2015;25:3-15. https://doi. org/10.1111/sms.12208
- Magnussen RA, Dunn WR, Thomson AB. Nonoperative treatment of midportion Achilles tendinopathy: a systematic review. *Clin J Sport Med*. 2009;19:54-64. https://doi.org/10.1097/JSM.0b013e31818ef090
- Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes: a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. *Sports Med.* 2013;43:267-286. https://doi.org/10.1007/s40279-013-0019-z
- Pearson J, Rowlands D, Highet R. Autologous blood injection to treat Achilles tendinopathy? A randomized controlled trial. *J Sport Rehabil*. 2012;21:218-224. https://doi.org/10.1123/jsr.21.3.218
- Ram R, Meeuwisse W, Patel C, Wiseman DA, Wiley JP. The limited effectiveness of a home-based eccentric training for treatment of Achilles tendinopathy. *Clin Invest Med*. 2013;36:E197-E206.
- Rompe JD, Furia J, Maffulli N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion Achilles tendinopathy: a randomized controlled trial. *Am J Sports Med.* 2009;37:463-470. https://doi.org/10.1177/0363546508326983
- Stevens M, Tan CW. Effectiveness of the Alfredson protocol compared with a lower repetition-volume protocol for midportion Achilles tendinopathy: a randomized controlled trial. *J Orthop Sports Phys Ther*. 2014;44:59-67. https://doi.org/10.2519/jospt.2014.4720
- Sussmilch-Leitch SP, Collins NJ, Bialocerkowski AE, Warden SJ, Crossley KM. Physical therapies for Achilles tendinopathy: systematic review and meta-analysis. *J Foot Ankle Res*. 2012;5:15. https://doi.org/10.1186/1757-1146-5-15

APPENDIX E

- Tumilty S, Mani R, Baxter GD. Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial. *Lasers Med Sci.* 2016;31:127-135. https://doi.org/10.1007/s10103-015-1840-4
- Tumilty S, McDonough S, Hurley DA, Baxter GD. Clinical effectiveness of low-level laser therapy as an adjunct to eccentric exercise for the treatment of Achilles' tendinopathy: a randomized controlled trial. *Arch Phys Med Rehabil*. 2012;93:733-739. https://doi.org/10.1016/j.apmr.2011.08.049
- Yelland MJ, Sweeting KR, Lyftogt JA, Ng SK, Scuffham PA, Evans KA. Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: a randomised trial. *Br J Sports Med*. 2011;45:421-428. https://doi.org/10.1136/bjsm.2009.057968
- Zhang BM, Zhong LW, Xu SW, Jiang HR, Shen J. Acupuncture for chronic Achilles tendnopathy: a randomized controlled study. *Chin J Integr Med*. 2013;19:900-904. https://doi.org/10.1007/s11655-012-1218-4

Stretching

Verrall G, Schofield S, Brustad T. Chronic Achilles tendinopathy treated with eccentric stretching program. *Foot Ankle Int*. 2011;32:843-849. https://doi.org/10.3113/FAI.2011.0843

Neuromuscular Re-education

- Azevedo LB, Lambert MI, Vaughan CL, O'Connor CM, Schwellnus MP. Biomechanical variables associated with Achilles tendinopathy in runners. *Br J Sports Med*. 2009;43:288-292. https://doi.org/10.1136/bjsm.2008.053421
- Baur H, Müller S, Hirschmüller A, Cassel M, Weber J, Mayer F. Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals. *J Electromyogr Kinesiol*. 2011;21:499-505. https://doi.org/10.1016/j.jelekin.2010.11.010
- Franettovich Smith MM, Honeywill C, Wyndow N, Crossley KM, Creaby MW. Neuromotor control of gluteal muscles in runners with Achilles tendinopathy. *Med Sci Sports Exerc*. 2014;46:594-599. https://doi.org/10.1249/MSS.000000000000133

Manual Therapy

Cheatham SW, Lee M, Cain M, Baker R. The efficacy of instrument assisted soft tissue mobilization: a systematic review. *J Can Chiropr Assoc.* 2016;60:200-211.

Patient Education: Activity Modification

Silbernagel KG, Brorsson A, Lundberg M. The majority of patients with Achilles tendinopathy recover fully when treated with exercise alone: a 5-year follow-up. *Am J Sports Med*. 2011;39:607-613. https://doi.org/10.1177/0363546510384789

Patient Counseling

Rowe V, Hemmings S, Barton C, Malliaras P, Maffulli N, Morrissey D. Conservative management of midportion Achilles tendinopa-

- thy: a mixed methods study, integrating systematic review and clinical reasoning. *Sports Med.* 2012;42:941-967. https://doi.org/10.2165/11635410-000000000-00000
- Silbernagel KG, Brorsson A, Lundberg M. The majority of patients with Achilles tendinopathy recover fully when treated with exercise alone: a 5-year follow-up. *Am J Sports Med*. 2011;39:607-613. https://doi.org/10.1177/0363546510384789

Night Splints

- de Jonge S, de Vos RJ, Van Schie HT, Verhaar JA, Weir A, Tol JL. Oneyear follow-up of a randomised controlled trial on added splinting to eccentric exercises in chronic midportion Achilles tendinopathy. *Br J Sports Med.* 2010;44:673-677. https://doi.org/10.1136/ bjsm.2008.052142
- Sussmilch-Leitch SP, Collins NJ, Bialocerkowski AE, Warden SJ, Crossley KM. Physical therapies for Achilles tendinopathy: systematic review and meta-analysis. *J Foot Ankle Res.* 2012;5:15. https://doi.org/10.1186/1757-1146-5-15

Orthoses

- Magnussen RA, Dunn WR, Thomson AB. Nonoperative treatment of midportion Achilles tendinopathy: a systematic review. *Clin J Sport Med*. 2009;19:54-64. https://doi.org/10.1097/JSM.0b013e31818ef090
- Munteanu SE, Scott LA, Bonanno DR, et al. Effectiveness of customised foot orthoses for Achilles tendinopathy: a randomised controlled trial. *Br J Sports Med*. 2015;49:989-994. https://doi.org/10.1136/bjsports-2014-093845

Taping

- Firth BL, Dingley P, Davies ER, Lewis JS, Alexander CM. The effect of kinesiotape on function, pain, and motoneuronal excitability in healthy people and people with Achilles tendinopathy. *Clin J Sport Med*. 2010;20:416-421. https://doi.org/10.1097/JSM.0b013e3181f479b0

Low-Level Laser Therapy

Hutchison AM, Pallister I, Evans RM, et al. Intense pulsed light treatment of chronic mid-body Achilles tendinopathy: a double blind randomised placebo-controlled trial. *Bone Joint J.* 2013;95-B:504-509. https://doi.org/10.1302/0301-620X.95B4.30558

Tumilty S, Mani R, Baxter GD. Photobiomodulation and eccentric

APPENDIX E

exercise for Achilles tendinopathy: a randomized controlled trial. Lasers Med Sci. 2016;31:127-135. https://doi.org/10.1007/ s10103-015-1840-4

Tumilty S, McDonough S, Hurley DA, Baxter GD. Clinical effectiveness of low-level laser therapy as an adjunct to eccentric exercise for the treatment of Achilles' tendinopathy: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93:733-739. https://doi. org/10.1016/j.apmr.2011.08.049

Dry Needling

Wheeler PC, Mahadevan D, Bhatt R, Bhatia M. A comparison of two different high-volume image-guided injection procedures for patients with chronic noninsertional Achilles tendinopathy: a pragmatic retrospective cohort study. J Foot Ankle Surg. 2016;55:976-979. https://doi.org/10.1053/j.jfas.2016.04.017

Yeo A, Kendall N, Jayaraman S. Ultrasound-guided dry needling with percutaneous paratenon decompression for chronic Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2016;24:2112-2118. https://doi.org/10.1007/s00167-014-3458-7

APPENDIX F

LEVELS OF EVIDENCE TABLE*

Level	Intervention/ Prevention	Pathoanatomic/Risk/ Clinical Course/ Prognosis/Differential Diagnosis	Diagnosis/Diagnostic Accuracy	Prevalence of Condition/Disorder	Exam/Outcomes
I	Systematic review of high-quality RCTs High-quality RCT [†]	Systematic review of prospective cohort studies High-quality prospective cohort study [‡]	Systematic review of high-quality diagnostic studies High-quality diagnostic study [§] with validation	Systematic review, high- quality cross-sectional studies High-quality cross- sectional study	Systematic review of prospective cohort studies High-quality prospective cohort study
II	Systematic review of high-quality cohort studies High-quality cohort study [‡] Outcomes study or eco- logical study Lower-quality RCT¶	Systematic review of retrospective cohort study Lower-quality prospective cohort study High-quality retrospective cohort study Consecutive cohort Outcomes study or ecological study	Systematic review of exploratory diagnostic studies or consecutive cohort studies High-quality exploratory diagnostic studies Consecutive retrospective cohort	Systematic review of studies that allows relevant estimate Lower-quality cross- sectional study	Systematic review of lower-quality prospective cohort studies Lower-quality prospective cohort study
III	Systematic reviews of case-control studies High-quality case-control study Lower-quality cohort study	Lower-quality retrospec- tive cohort study High-quality cross- sectional study Case-control study	Lower-quality exploratory diagnostic studies Nonconsecutive retro- spective cohort	Local nonrandom study	High-quality cross- sectional study
IV	Case series	Case series	Case-control study		Lower-quality cross- sectional study
V	Expert opinion	Expert opinion	Expert opinion	Expert opinion	Expert opinion

Abbreviation: RCT, randomized clinical trial.

^{*}Adapted from Phillips et al149 (http://www.cebm.net/index.aspx?o=1025). See also APPENDIX G.

 $^{^\}dagger$ High quality includes RCTs with greater than 80% follow-up, blinding, and appropriate randomization procedures.

 $^{^{\}ddagger}High\mbox{-}quality\ cohort\ study\ includes\ greater\ than\ 80\%\ follow\mbox{-}up.$

[§]High-quality diagnostic study includes consistently applied reference standard and blinding.

 $^{lap{High-quality\ prevalence\ study\ is\ a\ cross-sectional\ study\ that\ uses\ a\ local\ and\ current\ random\ sample\ or\ censuses.}}$

Weaker diagnostic criteria and reference standards, improper randomization, no blinding, and less than 80% follow-up may add bias and threats to validity.

APPENDIX G

PROCEDURES FOR ASSIGNING LEVELS OF EVIDENCE

- Level of evidence is assigned based on the study design using the Levels of Evidence table (APPENDIX F), assuming high quality (eg, for intervention, randomized clinical trial starts at level I)
- Study quality is assessed using the critical appraisal tool, and the study is assigned 1 of 4 overall quality ratings based on the critical appraisal results
- Level of evidence assignment is adjusted based on the overall quality rating:
 - High quality (high confidence in the estimate/results): study remains at assigned level of evidence (eg, if the randomized clinical trial is rated high quality, its final assignment is level I). High quality should include:
 - Randomized clinical trial with greater than 80% follow-up, blinding, and appropriate randomization procedures

- · Cohort study includes greater than 80% follow-up
- Diagnostic study includes consistently applied reference standard and blinding
- Prevalence study is a cross-sectional study that uses a local and current random sample or censuses
- Acceptable quality (the study does not meet requirements for high quality and weaknesses limit the confidence in the accuracy of the estimate): downgrade 1 level
 - Based on critical appraisal results
- Low quality: the study has significant limitations that substantially limit confidence in the estimate: downgrade 2 levels
 - · Based on critical appraisal results
- Unacceptable quality: serious limitations: exclude from consideration in the guideline
 - · Based on critical appraisal results

VIEWPOINT

PAUL E. MINTKEN, PT. DPT¹⁻⁴ • JEFF R. MOORE, PT. DPT⁴⁻⁷ • TIMOTHY W. FLYNN, PT. PhD. FAPTA⁴⁻⁶

Physical Therapists' Role in Solving the Opioid Epidemic

J Orthop Sports Phys Ther 2018;48(5):349-353. doi:10.2519/jospt.2018.0606

n this Viewpoint, we highlight the challenges of the current opioid epidemic and outline strategies that the physical therapy profession may adopt to be part of the solution. These strategies include facilitating and providing patient education, early access to physical therapy services, and the promotion of health, wellness, and prevention.

The Problem

An estimated 116 million Americans suffer from chronic pain, at a cost of over \$600 billion per year, or roughly \$2000 per person per year.²³ One of the biggest predictors of chronic pain is the severity of acute pain.^{4,31}

Appropriate management of acute pain is key to preventing the progression to persistent pain.26 In a misguided attempt to manage acute pain, The Joint Commission in the United States created new pain management standards in 2001, which led to the adoption of pain as a "fifth vital sign."37 These new standards required all health care providers to ask patients about their pain. The medical-industrial complex (private corporations engaged in the business of supplying health care products and services to patients for a profit),44 specifically the pharmaceutical industry, capitalized on this and initiated a massive marketing and educational campaign designed

to promote the use of opioid pain medications.51 Prescription opioids are often used to relieve moderate to severe pain following a severe injury or surgery. In 1980, a 1-paragraph letter published in the New England Journal of Medicine fueled the opioid epidemic by stating, "Despite the widespread use of narcotic drugs in hospitals, the development of addiction is rare ... "42 In 1995, the US Food and Drug Administration approved OxyContin (Purdue Pharma LP, Stamford, CT) as a sustained-release opioid medication that was purported to have a lower potential for addiction and abuse due to its slow-release properties.7 Pharmaceutical companies aggressively promoted and marketed these drugs, while reassuring the medical community that addiction to opioids was rare.51 This led to a widespread increase in prescription of opioids to manage pain.³³ This increase in prescription rates led to easy availability, diversion, and misuse of these medications.⁵¹ Unfortunately, the medical community failed to realize that these medications were highly addictive⁷ and this has led to a public health crisis, with rampant opioid misuse and overdoses.

Vowles et al,52 in a systematic review on the rates of opioid misuse, abuse, and addiction, defined addiction as a "pattern of continued use with experience of, or demonstrated potential for, harm." Opioid-related harm has reached epidemic levels.³⁸ The quantity of opioid prescriptions in the United States is staggering, with the Centers for Disease Control and Prevention (CDC) reporting 259 million prescriptions written in 2012, enough for every single American adult to have a bottle of pills.41 In a survey of more than 51000 civilian, noninstitutionalized American adults, more than one third reported prescription opioid use in 2015.²² Based on this survey, the authors estimated that almost 92 million (37.8%) Americans used prescription opioids in 2015. The majority of the individuals (63.4%) took the opioids to relieve physical pain. In many cases, addiction starts with an opioid prescription for the treatment of pain. A 2005 analysis of 2797 heroin users reported that 75% of those

¹Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO. ²Regis University Fellowship in Orthopaedic Manual Physical Therapy, Denver, CO. ³Wardenburg Health Center at the University of Colorado, Boulder, CO. ⁴Evidence In Motion, Louisville, KY. ⁵School of Physical Therapy, South College, Knoxville, TN. ⁶Colorado In Motion, Fort Collins, CO. ⁷Institute of Clinical Excellence, Windsor, CO. Dr Flynn is an owner and clinical lead at Colorado In Motion, which offers physical and occupational therapy services in Colorado. Dr Flynn is also a partner at Evidence In Motion, which offers evidence-based continuing education, along with residency and fellowship training. Dr Moore is founder and CEO at the Institute of Clinical Excellence, which offers continuing education, mentoring, and online educational opportunities. Dr Moore is also a partner at Pro-Activity LLC, which specializes in providing prevention and health promotion services to corporations. Drs Mintken and Moore are both affiliate faculty at Evidence In Motion. The authors certify that they have no other affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Paul E. Mintken, Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045. E-mail: paul.mintken@ucdenver.edu © Copyright ©2018 Journal of Orthopaedic & Sports Physical Therapy®

{ VIEWPOINT }

who began abusing heroin indicated that their first opioid was a prescription drug. It is estimated that 15 million people worldwide are addicted to opioids, and 69 000 people die from opioid overdose each year. Death from opioid overdose in the United States increased almost 5-fold from 2001 to 2013. The CDC estimates that the misuse of opioids is responsible for more than 1000 emergency department visits and 91 deaths every single day in the United States.

A recent Gallup poll of 6200 Americans revealed that 78% of those surveyed would prefer drug-free pain management over opioids.1 This poll explored Americans' perceptions about the opioid epidemic and treatments for pain. Almost one third of those polled viewed prescription opioid medications as "not very safe" or "not safe at all." The respondents cited multiple causes for the opioid problem.1 Almost half (44%) of those surveyed saw the overprescription of opioids as a "crisis" or "very serious problem" in their area, and 55% placed significant blame on the pharmaceutical industry for encouraging and incentivizing physicians to prescribe opioids. Over half (53%) placed "a lot" of blame on physicians for overprescribing painkillers to their patients. While not assessed in this poll, the blame does not lie wholly with the pharmaceutical and health care industries. Misuse. abuse, and addiction to opioids can lead to drug-seeking behavior and "doctor shopping," and the street value of opioids has been estimated to be greater than that of marijuana and heroin.²⁷

What Can Physical Therapists Do?

The results of the Gallup poll¹ signal a demand for a new health care strategy that includes more drug-free treatments for pain management. While the respondents believed that physical therapy was the safest and most effective drug-free pain management approach, those surveyed would seek care for neck or back pain from a physician (53%), chiropractor (28%), or massage therapist (7%) before seeking a physical therapist

(6%). Herein lies the problem. If physical therapists are viewed more favorably than other providers for safe and effective drug-free pain management, then why aren't individuals in pain seeking our care more frequently? Unfortunately, there is a lack of public awareness about what physical therapy has to offer.²⁴ As of 2015, Americans are able to seek some level of treatment from a licensed physical therapist in all 50 states without a prescription or referral from a physician. Many Americans are not aware that direct access to physical therapy services is available, and in many instances, third-party payers require referral for reimbursement. Also, in the United States, many insurers require a "copayment," which is a payment defined in an insurance policy and paid by an insured person each time a medical service is accessed. Copayments can run as high as \$75 per physical therapy visit, even with health insurance. Finally, many health insurance plans discourage patient autonomy and health-seeking behavior, which means that there is a segment of the population that actually needs more care than they receive.3,8 As physical therapists, it is important to educate our patients on the appropriate use of health care services.

Education Physical therapists need to improve society's knowledge and awareness of physical therapy as a nonpharmaceutical, nonsurgical alternative for the management of pain. 14,24 Confronting the chronic pain epidemic will require the physical therapy profession to step out of its comfort zone. As conscientious health care providers, we must clearly discuss the risks of opioid medications with our patients and their families. In a recent randomized clinical trial that included 240 patients with moderate to severe chronic back pain or hip or knee osteoarthritis pain, treatment with opioids was not superior to treatment with nonopioid medications for improving pain-related function, and had higher adverse medication-related symptoms over 12 months.²⁵ The CDC now recommends nonpharmaceutical approaches such as physical therapy over opioid medications for chronic pain.¹⁴

Physical therapists also need to expand their educational efforts to physicians and other referral sources who continue to overprescribe opioids and underprescribe physical therapy. Zheng et al⁵⁴ estimated that 170 million individuals consulted a primary care provider for low back pain between 1997 and 2010. Only 10% of these individuals received a referral for physical therapy services, while up to 45% received an opioid prescription. The most current clinical practice guidelines from the American College of Physicians recommend nonpharmacologic treatment approaches consisting of a variety of manual therapies, modalities, and exercise approaches for the treatment of acute, subacute, and chronic low back pain. 43 Physical therapists have a duty to discuss safe, evidence-based alternatives to opioids for managing pain.

Next, we must clearly communicate to patients why they hurt, from a modern pain science perspective.29,35 Moseley36 argued in 2003 that we need to reconceptualize the problem of chronic pain, because both patients and health care providers may have poor knowledge of currently accurate information about pain. We need to educate our patients that the biology of pain is never straightforward and that pain does not provide a window into the state of the tissues and is frequently modulated by psychosocial and somatic factors.34 As pain becomes persistent, the relationship between the tissues and pain is less predictable, and pain becomes an output based on the brain's perception of tissue danger.35 A recent systematic review by Louw et al³⁰ concluded that education about pain biology may reduce pain and disability, improve knowledge of pain, improve function and movement, reduce psychosocial factors, and minimize health care utilization in individuals with chronic musculoskeletal conditions. Finally, there is emerging evidence that educating our youth about pain, with a short 30-minute lecture, may change beliefs about pain

and, ultimately, how individuals respond to it. 28

Promotion of Early Access to Physical Therapy Physical therapists need to educate referral sources that early access to physical therapy decreases costs and health care utilization, including advanced imaging, drugs, and surgery. 6,17-19 Thackeray et al⁴⁹ reported that referral to physical therapy and subsequent physical therapy participation were associated with reduced opioid prescriptions during follow-up in individuals with a new onset of low back pain. Virginia Mason Medical Center set up a low back pain clinic that offered same-day access for physical therapy, which led to faster recovery, lower costs, and less sick leave.20 Direct access to physical therapy has been shown to reduce medical costs, lost time from work, number of visits per episode of care, and episodes of recurrence. 13,15,21,32,39

Our profession needs to engage in dialog with small, medium, and large businesses in our community and point out that they are in the health care business. We need to explain that the current model of pain management is actively harming their employees, and we need to provide them alternative pathways to nonpharmacological, noninvasive, and nonsurgical care as the "first-line" treatment of pain. For example, the New York Times recently reported that Amazon, Berkshire Hathaway, and JPMorgan Chase will focus on an initiative for providing simplified, high-quality health care for their employees that is free from profitmaking incentives and constraints.53 Jamie Dimon of JPMorgan Chase stated, "The three of our companies have extraordinary resources, and our goal is to create solutions that benefit our U.S. employees, their families and, potentially, all Americans."53 Opportunities such as this may allow physical therapists to leverage opportunities outside of the traditional health care system to provide early, costeffective, first-line management of pain conditions. 6,16,18,39,48

Prevention Physical therapists are in a unique position to promote innovative

health, wellness, and prevention strategies and promote positive lifestyle changes.11,12 Physical therapists possess advanced knowledge and strategies across key domains of prevention and health promotion, such as sleep,46,47 physical activity,12 and nutrition,50 that have been shown to contribute to acute and chronic pain syndromes. Lifestyle changes and increased physical activity may lead to health benefits in those with chronic disease, may prevent or manage a number of health conditions, and may lead to an increased quality of life.10,12 The American Physical Therapy Association advocates for an annual checkup to provide broad health screenings, to assess health status, and to identify potential health risks in their community.2 The physical therapy profession can take a leading role in health care and health promotion, with the ultimate goal being a reduction in the need for more dangerous health interventions like opioid medications and surgery.9 The knowledge and skill of physical therapists, combined with the amount of time we spend with patients, place our profession in an ideal position to not only pluck individuals from the river of chronic pain, but to also prevent them from falling into the river in the first place.

Conclusion

The persistent focus on pain by health care providers needs to be re-examined, as it is now well understood that pain is not a vital sign that can be measured objectively, like heart rate and blood pressure. Rather, pain is a multifactorial perception of the current state of physical and emotional well-being, and it can successfully be treated with drug-free management strategies.⁵

A century ago, our profession rallied together following the carnage of World War I. We saw that no matter how burned, broken, or shattered our patients were, there was within each individual the transformative power of the human spirit to overcome. It is now time for that same passion and belief to be reignited and focused on the physical therapist's

role to heal a society in the midst of pain. People in pain are crying out for our help. It is time to be of some use.

Key Points

- It is estimated that 15 million people worldwide are addicted to opioids, and 69 000 people die from opioid overdose each year.
- Seventy-eight percent of Americans surveyed prefer drug-free pain management over opioids, and they view physical therapy as the safest and most effective alternative to drugs for the treatment of pain.
- A recent report by the CDC recommends nonpharmacological approaches, such as physical therapy, over opioid medications for chronic pain.
- Physical therapists can play a key role in treating as well as preventing chronic pain.

REFERENCES

- Americans prefer drug-free pain management over opioids. Available at: http://news.gallup. com/reports/218495/s.aspx?utm_source=link_ newsv9&utm_campaign=item_217676&utm_ medium=copy. Accessed December 31, 2017.
- Annual checkup by a physical therapist. Available at: http://www.apta.org/AnnualCheckup. Accessed January 24, 2018.
- Babitsch B, Gohl D, von Lengerke T. Re-revisiting Andersen's Behavioral Model of Health Services Use: a systematic review of studies from 1998-2011. Psychosoc Med. 2012;9:doc11. https://doi. org/10.3205/psm000089
- Campbell P, Foster NE, Thomas E, Dunn KM. Prognostic indicators of low back pain in primary care: five-year prospective study. *J Pain*. 2013;14:873-883. https://doi.org/10.1016/j. jpain.2013.03.013
- Chang KL, Fillingim R, Hurley RW, Schmidt S. Chronic pain management: nonpharmacological therapies for chronic pain. FP Essent. 2015;432:21-26.
- 6. Childs JD, Fritz JM, Wu SS, et al. Implications of early and guideline adherent physical therapy for low back pain on utilization and costs. *BMC Health Serv Res*. 2015;15:150. https://doi. org/10.1186/s12913-015-0830-3
- Cicero TJ, Inciardi JA, Muñoz A. Trends in abuse of OxyContin® and other opioid analgesics in the United States: 2002-2004. J Pain. 2005;6:662-672. https://doi.org/10.1016/j.jpain.2005.05.004
- 8. Clewley D, Rhon D, Flynn T, Koppenhaver S, Cook

{ VIEWPOINT }

- C. Physical therapists familiarity and beliefs about health services utilization and health seeking behaviour. *Braz J Phys Ther*. In press. https://doi.org/10.1016/j.bipt.2018.02.002
- Dean E. Physical therapy in the 21st century (part I): toward practice informed by epidemiology and the crisis of lifestyle conditions. *Physiother Theory Pract*. 2009;25:330-353. https://doi. org/10.1080/09593980802668027
- Dean E. Physical therapy in the 21st century (part II): evidence-based practice within the context of evidence-informed practice. *Physiother Theory Pract*. 2009;25:354-368. https://doi. org/10.1080/09593980902813416
- Dean E, Al-Obaidi S, De Andrade AD, et al. The First Physical Therapy Summit on Global Health: implications and recommendations for the 21st century. *Physiother Theory Pract*. 2011;27:531-547. https://doi.org/10.3109/09593985.2010.544 052
- 12. Dean E, Söderlund A. What is the role of lifestyle behaviour change associated with non-communicable disease risk in managing musculoskeletal health conditions with special reference to chronic pain? BMC Musculoskelet Disord. 2015;16:87. https://doi.org/10.1186/s12891-015-0545-y
- Domholdt E, Durchholz AG. Direct access use by experienced therapists in states with direct access. *Phys Ther*. 1992;72:569-574. https://doi. org/10.1093/ptj/72.8.569
- Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016. JAMA. 2016;315:1624-1645. https:// doi.org/10.1001/jama.2016.1464
- Flynn TW. Direct access: the time has come for action. J Orthop Sports Phys Ther. 2003;33:102-103. https://doi.org/10.2519/jospt.2003.33.3.102
- **16.** Fritz JM, Brennan GP, Hunter SJ. Physical therapy or advanced imaging as first management strategy following a new consultation for low back pain in primary care: associations with future health care utilization and charges. *Health Serv Res.* 2015;50:1927-1940. https://doi.org/10.1111/1475-6773.12301
- 17. Fritz JM, Childs JD, Wainner RS, Flynn TW. Primary care referral of patients with low back pain to physical therapy: impact on future health care utilization and costs. Spine (Phila Pa 1976). 2012;37:2114-2121. https://doi.org/10.1097/BRS.0b013e31825d32f5
- 18. Fritz JM, Kim M, Magel JS, Asche CV. Costeffectiveness of primary care management with or without early physical therapy for acute low back pain: economic evaluation of a randomized clinical trial. Spine (Phila Pa 1976). 2017;42:285-290. https://doi.org/10.1097/ BRS.000000000000001729
- **19.** Fritz JM, King JB, McAdams-Marx C. Associations between early care decisions and the risk for long-term opioid use for patients with low back pain with a new physician consultation and initiation of opioid therapy. *Clin J Pain*. In press. https://doi.org/10.1097/AJP.000000000000000571
- 20. Ginsburg PB, Pham HH, McKenzie K, Milstein A.

- Distorted payment system undermines business case for health quality and efficiency gains. *Issue Brief Cent Stud Health Syst Change*. 2007:1-4.
- **21.** Gould JS. Direct access. Am J Orthop (Belle Mead NJ). 2005;34:110.
- Han B, Compton WM, Blanco C, Crane E, Lee J, Jones CM. Prescription opioid use, misuse, and use disorders in U.S. adults: 2015 National Survey on Drug Use and Health. Ann Intern Med. 2017;167:293-301. https://doi.org/10.7326/ M17-0865
- 23. Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. Washington, DC: The National Academies Press; 2011.
- 24. Kash BA, Deshmukh AA. Developing a strategic marketing plan for physical and occupational therapy services: a collaborative project between a critical access hospital and a graduate program in health care management. Health Mark Q. 2013;30:263-280. https://doi.org/10.1080/07 359683.2013.814507
- 25. Krebs EE, Gravely A, Nugent S, et al. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial. *JAMA*. 2018;319:872-882. https://doi.org/10.1001/jama.2018.0899
- Lavand'homme P. The progression from acute to chronic pain. Curr Opin Anaesthesiol. 2011;24:545-550. https://doi.org/10.1097/ ACO.0b013e32834a4f74
- Longo LP, Parran T, Jr., Johnson B, Kinsey W. Addiction: part II. Identification and management of the drug-seeking patient. Am Fam Physician. 2000;61:2401-2408.
- 28. Louw A, Podalak J, Zimney K, Schmidt S, Puentedura EJ. Can pain beliefs change in middle school students? A study of the effectiveness of pain neuroscience education. *Physiother Theory Pract*. 2018;34:542-550. https://doi.org/10.1080/09593985.2017.1423142
- 29. Louw A, Puentedura EJ, Zimney K, Schmidt S. Know pain, know gain? A perspective on pain neuroscience education in physical therapy. J Orthop Sports Phys Ther. 2016;46:131-134. https:// doi.org/10.2519/jospt.2016.0602
- Louw A, Zimney K, Puentedura EJ, Diener I.
 The efficacy of pain neuroscience education on musculoskeletal pain: a systematic review of the literature. *Physiother Theory Pract*. 2016;32:332-355. https://doi.org/10.1080/09593985.2016.119
- Mehta SP, MacDermid JC, Richardson J, Mac-Intyre NJ, Grewal R. Baseline pain intensity is a predictor of chronic pain in individuals with distal radius fracture. J Orthop Sports Phys Ther. 2015;45:119-127. https://doi.org/10.2519/ jospt.2015.5129
- **32.** Mitchell JM, de Lissovoy G. A comparison of resource use and cost in direct access versus physician referral episodes of physical therapy. *Phys Ther*. 1997;77:10-18. https://doi.org/10.1093/ptj/77.1.10

- 33. Morone NE, Weiner DK. Pain as the fifth vital sign: exposing the vital need for pain education. Clin Ther. 2013;35:1728-1732. https://doi. org/10.1016/j.clinthera.2013.10.001
- Moseley GL. Reconceptualising pain according to modern pain science. *Phys Ther Rev.* 2007;12:169-178. https://doi.org/10.1179/108331907X223010
- Moseley GL, Butler DS. Fifteen years of explaining pain: the past, present, and future. J Pain. 2015;16:807-813. https://doi.org/10.1016/j.jpain.2015.05.005
- **36.** Moseley L. Unraveling the barriers to reconceptualization of the problem in chronic pain: the actual and perceived ability of patients and health professionals to understand the neurophysiology. *J Pain*. 2003;4:184-189. https://doi.org/10.1016/S1526-5900(03)00488-7
- 37. Mularski RA, White-Chu F, Overbay D, Miller L, Asch SM, Ganzini L. Measuring pain as the 5th vital sign does not improve quality of pain management. J Gen Intern Med. 2006;21:607-612. https://doi.org/10.1111/j.1525-1497.2006.00415.x
- **38.** Nelson LS, Juurlink DN, Perrone J. Addressing the opioid epidemic. *JAMA*. 2015;314:1453-1454. https://doi.org/10.1001/jama.2015.12397
- **39.** Ojha HA, Snyder RS, Davenport TE. Direct access compared with referred physical therapy episodes of care: a systematic review. *Phys Ther.* 2014;94:14-30. https://doi.org/10.2522/ptj.20130096
- 40. Parthvi R, Agrawal A, Khanijo S, Tsegaye A, Talwar A. Acute opiate overdose: an update on management strategies in emergency department and critical care unit. Am J Ther. In press. https://doi.org/10.1097/MJT.0000000000000681
- **41.** Patrick SW, Davis MM, Lehmann CU, Cooper WO. Increasing incidence and geographic distribution of neonatal abstinence syndrome: United States 2009 to 2012. *J Perinatol*. 2015;35:650-655. https://doi.org/10.1038/jp.2015.36
- Porter J, Jick H. Addiction rare in patients treated with narcotics [letter]. N Engl J Med. 1980;302:123. https://doi.org/10.1056/ NEJM198001103020221
- 43. Qaseem A, Wilt TJ, McLean RM, Forciea MA, Clinical Guidelines Committee of the American College of Physicians. Noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2017;166:514-530. https://doi.org/10.7326/ M16-2367
- **44.** Relman AS. The new medical-industrial complex. *N Engl J Med*. 1980;303:963-970. https://doi.org/10.1056/NEJM198010233031703
- **45.** Schiller EY, Mechanic OJ. *Opioid, Overdose*. Orlando, FL: StatPearls Publishing; 2018.
- Siengsukon CF, Al-Dughmi M, Stevens S. Sleep health promotion: practical information for physical therapists. *Phys Ther*. 2017;97:826-836. https://doi.org/10.1093/ptj/pzx057
- **47.** Simpson NS, Scott-Sutherland J, Gautam S, Sethna N, Haack M. Chronic exposure to insuf-

- ficient sleep alters processes of pain habituation and sensitization. *Pain*. 2018;159:33-40. https://doi.org/10.1097/j.pain.00000000000001053
- **48.** Snow BL, Shamus E, Hill C. Physical therapy as primary health care: public perceptions. *J Allied Health*. 2001;30:35-38.
- 49. Thackeray A, Hess R, Dorius J, Brodke D, Fritz J. Relationship of opioid prescriptions to physical therapy referral and participation for Medicaid patients with new-onset low back pain. J Am Board Fam Med. 2017;30:784-794. https://doi. org/10.3122/jabfm.2017.06.170064
- **50.** Tick H. Nutrition and pain. *Phys Med Rehabil Clin N Am.* 2015;26:309-320. https://doi.

- org/10.1016/j.pmr.2014.12.006
- Van Zee A. The promotion and marketing of OxyContin: commercial triumph, public health tragedy. Am J Public Health. 2009;99:221-227. https://doi.org/10.2105/AJPH.2007.131714
- 52. Vowles KE, McEntee ML, Julnes PS, Frohe T, Ney JP, van der Goes DN. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. *Pain*. 2015;156:569-576. https://doi.org/10.1097/01.j.p ain.0000460357.01998.f1
- 53. Wingfield N, Thomas K, Abelson R. Amazon, Berkshire Hathaway and JPMorgan team up to try to disrupt health care. The New York

- Times. January 30, 2018. https://www.nytimes.com/2018/01/30/technology/amazon-berkshire-hathaway-jpmorgan-health-care.html
- 54. Zheng P, Kao MC, Karayannis NV, Smuck M. Stagnant physical therapy referral rates alongside rising opioid prescription rates in patients with low back pain in the United States 1997-2010. Spine (Phila Pa 1976). 2017;42:670-674. https://doi.org/10.1097/BRS.0000000000001875

PUBLISH Your Manuscript in a Journal With International Reach

JOSPT offers authors of accepted papers an international audience. The Journal is currently distributed to the members of APTA's Orthopaedic and Sports Physical Therapy Sections and 32 orthopaedics, manual therapy, and sports groups in 24 countries who provide online access either as a member benefit or at a discount. As a result, the Journal is now distributed monthly to more than 37,000 individuals around the world who specialize in musculoskeletal and sports-related rehabilitation, health, and wellness. In addition, JOSPT reaches students and faculty, physical therapists and physicians at more than 1,250 institutions in 60 countries. Please review our Information for and Instructions to Authors at www.jospt.org in the Info Center for Authors and submit your manuscript for peer review at http://mc.manuscriptcentral.com/jospt.

VIEWPOINT

AJAY S. PADAKI, MD1 . CHRISTOPHER S. AHMAD, MD1

Can We Reduce the Epidemic of Elbow Injuries in Youth Throwers?

J Orthop Sports Phys Ther 2018;48(5):354-357. doi:10.2519/jospt.2018.0607

s participation in youth sports continues to increase across the Nation, more adolescents are participating in Little League baseball in the United States than ever before. Accompanying this increased participation is an epidemic of upper extremity injuries in young throwers. Recent investigations have demonstrated that as many as 30% to 40% of 7- to 18-year-old baseball players experience elbow and shoulder pain during the baseball season. 15,16

This is particularly important because a high percentage (46%) of injured adolescents report being encouraged to keep playing despite having arm pain.¹⁶

Initiating play at a participatory level likely contributes to early signs of overuse injuries. Demographic factors such as age, weight, and height also play a role in elbow injury, as do performance factors such as number of pitches thrown during a season and playing outside of the league.15 Increased year-long play and specialization have been identified as significant contributors to the high number of young throwers presenting with late sequelae of overuse injuries,²⁰ such as full-thickness ulnar collateral ligament (UCL) ruptures. A recent epidemiological assessment of UCL injuries in New York State demonstrated that the incidence of UCL reconstructions in patients 17 to 20 years old is rising significantly, greater than for any other age group.11

Early detection of overuse injuries may be able to prevent further progression. Because throwers are told frequently to keep playing despite painful symptoms,16 the importance of early and complete evaluation of elbow pain in the young thrower is paramount. The assessment of elbow pain in young throwers should include analysis of level of play, extent of participation (including year-long play), a thorough history intake and physical examination, collection of appropriate patient-reported outcomes, and imaging as indicated. Education regarding the importance of adherence to rehabilitation protocols is crucial. The purpose of this Viewpoint was to discuss the impetus behind the youth thrower elbow injury epidemic and how to best evaluate these patients.

Youth Sports Specialization

Identification of the impetus driving this throwing injury epidemic is critical to

curb this concerning trend. It is likely that a confluence of factors, including intrinsic desire for success, participation in multiple leagues, and external pressure from parents and coaches, contributes to longitudinal overuse. Recently, early sports specialization has received enhanced coverage as a driver of youth overuse injuries. Young athletes who played a single sport for more than 9 months in a year and who had higher levels of weekly participation exhibited a 36% increase in risks associated with severe overuse injuries compared to healthy controls.¹³ The relative risk of injury was significantly higher in ultracompetitive regions known to produce high-level collegiate prospects. 18,19

As health care providers become increasingly aware of the epidemic of elbow injuries in young baseball players, accurate distribution of preventative information to the baseball community is necessary. This begins with expanding the role of clinicians from a focus on treatment to a focus on preventative education. Currently, half of high school baseball players and more than 25% of players, coaches, and media members answered that they believe that UCL reconstruction, also known as Tommy

¹Columbia University Medical Center, New York, NY. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Ajay S. Padaki, Columbia University Medical Center, 622 West 168th Street, PH-1130, New York, NY 10032. E-mail: asp2160@cumc.columbia.edu © Copyright ©2018 *Journal of Orthopaedic & Sports Physical Therapy*®

John surgery, was required to enhance the strength of healthy players' elbows. 1,5 Physicians, physical therapists, and athletic trainers must eradicate these myths and counsel parents, players, and coaches regarding the risks of youth sports specialization. 3,6 Additionally, assessment instruments validated in youth throwers should be used by all health care providers to screen for at-risk players and help to monitor recovery in injured players. 2

When high-grade injuries to the UCL complex have occurred, and surgery is the selected option of the athlete and his or her care management team, referral to experienced, high-volume surgeons is critical to optimize these athletes' return-to-play prospects. Experience is necessary because UCL reconstruction is a complex operation with exceedingly low levels of incidence. Among Major League Baseball team physicians, only 6 surgeons stated that they perform 50 or more UCL reconstructions annually.⁷

Prevention

Addressing the increasing incidence of serious elbow injuries must begin with identifying causative factors and establishing evidence-based preventative measures. Significant research conducted over the past 20 years has attempted to isolate the causative factors of elbow overuse injuries in throwers. Despite these efforts, the numbers of both earlyand late-stage overuse injuries continue to increase. Strict evidence-based guidelines must be instituted to best address this trend. Furthermore, enforcement of pitch counts for young players, the number of leagues players participate in, and the number of months of participation per year in a single sport is required.

Total-body conditioning, including hip, back, and lower extremity strengthening, may be able to help optimize a player's biomechanics to reduce strain on the upper extremity. Additionally, playing in a variety of sports to augment athletic dexterity, rather than engaging in early sports specialization, may protect these players while enhancing athleticism. Last, stringent adherence to throwing rehabilitation protocols, including taking adequate time off from throwing and not accelerating the stage of rehabilitation, will aid secondary prevention of repeat injuries and exacerbations of existing injuries. Despite these advances, players who sustain severe injuries, such as full-thickness UCL ruptures and large osteochondral defects, should be referred to experienced surgeons to discuss operative management.

Clinical Assessment

When an adolescent experiences an injury, a thorough examination of the elbow is critical. The crux of the assessment of the youth thrower with elbow pain remains a thorough history intake and physical examination. A holistic approach incorporating the observations of parents and coaches can assist clinicians with gaining a complete clinical picture. Suspicion for severe overuse injury should be raised for highly specialized, single-sport athletes. Throwers with early symptoms of an overuse injury will often endorse subtle changes in velocity, accuracy, and delivery,14 whereas later-stage pathology may preclude them from throwing altogether. The timing and location of the pain and overall symptomatology, in addition to provocative movements, can help guide the physician down established diagnostic algorithms.23

Physical examination should begin with inspection and comparison to the contralateral extremity. Following a standardized physical exam of the upper extremity, thrower-specific diagnostic maneuvers must be performed. In addition to assessing for physeal injuries and rotator cuff-related shoulder pain, the elbow requires careful examination, given its anatomic complexity. Specifically, the integrity of the UCL must be determined to differentiate partial- or full-thickness rupture. Appropriate use of special tests, such as the moving valgus test, or milking test, may provide clinical insight on the condition of the UCL. This test has exhibited 100% sensitivity and 75%

specificity in 21 athletes with varied ages (range, 16-56 years) in the diagnosis of UCL damage.¹⁷

Patient-Reported Outcomes

Patient-reported outcomes have become prevalent in the clinical assessment of musculoskeletal injuries. While the Kerlan-Jobe Orthopaedic Clinic shoulder and elbow score is often used for throwers of all ages, the instrument was designed for and validated in an adult population. The instrument utilizes some items that make it suboptimal for pediatric evaluation, such as an item asking about the player's relationship with agents. Instead, assessors should consider the use of the recently published Youth Throwing Score,2 which was generated for and validated in youth baseball players. Written for young athletes (third-grade reading level) and rapidly completed, this instrument can be administered in the clinician's office, after practice, or at home.

Imaging

Clinicians should utilize imaging conservatively. One study reported that more than 80% of young baseball players demonstrated elbow radiographic abnormalities at preseason evaluation, the majority of whom were asymptomatic. Additional prospective investigations have demonstrated that abnormalities at routine preseason magnetic resonance imaging examinations are found in 35% to 48% of young baseball players, with abnormalities more often found in those players who receive private coaching and who play year round. ^{21,22}

Patients with persistent pain who have failed a thorough nonsurgical rehabilitation approach, including a graded return to throwing,²⁺ and who have additional specific examination findings, such as a positive valgus or moving valgus stress test, are candidates for advanced imaging. After imaging, the authors assert that the patient's symptoms and clinical presentation must be carefully integrated in evaluating radiological results. Positive

VIEWPOINT

imaging findings in the setting of painless play should not be treated operatively.

Treatment Options

When speaking with adolescents, discussion of the diagnosis and treatment recommendations requires great care and the inclusion of the parents. Patients and parents alike are often taken aback by even the idea of "shutting down" a player by stopping all throwing for an extended period, or by receiving surgery as an avenue to allow for recovery. These discussions must be conducted gradually to avoid alienating the thrower or parent. Nonoperative treatment must be taken seriously in young athletes, as increasing evidence suggests its potential for success. Intrasubstance damage is rare in young athletes, and partial UCL ruptures can be treated successfully using nonsurgical treatment, even in the majority (84%) of Major League Baseball players.8

In addition to the physiologic health of young athletes, mental health must be closely evaluated. Specialized athletes often possess high athletic identities and may suffer significant psychosocial trauma after receiving the recommendation that they not play. Psychology research in athletes with anterior cruciate ligament injuries has demonstrated that special attention should be given to the impact the diagnosis has on the patient, as sadness and even depression may impact the player immediately and the player's chance of returning to play at a high level in the future. 4,9 Referral to experienced physical therapists during recovery and referral to sports psychologists for patients who are not coping well assist in both close monitoring and empathic counseling.

With or without surgery, many overuse injuries require players to take a hiatus from throwing before entering an organized throwing rehabilitation protocol. While players and parents are often eager to advance to the next phase of recovery, pre-emptively engaging in activity prior to full healing of an injury carries the inherent risk of further progression of the injury. While returning a young athlete to play is important, overly aggressive rehabilitation progression risks exacerbating a sprain, which may be treated nonoperatively, into a rupture, which may require operative procedures. Thoroughly educating patients, parents, and coaches regarding the importance of adherence is crucial to optimizing the chances for a successful recovery, regardless of surgical intervention.

Further Research

Despite persistent, multidisciplinary efforts, one third to one half of youth baseball players experience elbow and shoulder pain in a given season. Prospective studies contrasting differing pitch-count protocols can assist with providing evidence-based guidelines for players and coaches to follow. Additionally, specialization studies with longer follow-up would help provide physicians more detailed information to educate parents and players regarding the risks of playing a single sport at an early age.

Key Points

- The crux of reducing an emerging prevalence of youth elbow injuries will be in implementing effective, evidence-based preventative measures.
- When initially evaluating the youth thrower, assessing the level of specialization and year-round play should raise suspicion for serious overuse injury.
- Validated patient-reported outcomes, such as the Youth Throwing Score, should supplement clinical evaluation and help monitor recovery.
- Advanced imaging should be reserved for players with significant physical exam findings, such as a positive moving valgus stress test, due to the high rate of incidental findings.
- Nonsurgical treatment, including relative rest, and graduated return to play often allow for successful return to play in athletes with partial UCL ruptures.

REFERENCES

- Ahmad CS, Grantham WJ, Greiwe RM. Public perceptions of Tommy John surgery. Phys Sportsmed. 2012;40:64-72. https://doi. org/10.3810/psm.2012.05.1966
- Ahmad CS, Padaki AS, Noticewala MS, Makhni EC, Popkin CA. The Youth Throwing Score: validating injury assessment in young baseball players. Am J Sports Med. 2017;45:317-324. https:// doi.org/10.1177/0363546516667503
- Brenner JS, Council on Sports Medicine and Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. *Pediatrics*. 2007;119:1242-1245. https://doi.org/10.1542/peds.2007-0887
- Christino MA, Fantry AJ, Vopat BG. Psychological aspects of recovery following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2015;23:501-509. https://doi.org/10.5435/ JAAOS-D-14-00173
- Conte SA, Hodgins JL, ElAttrache NS, Patterson-Flynn N, Ahmad CS. Media perceptions of Tommy John surgery. *Phys Sportsmed*. 2015;43:375-380. https://doi.org/10.1080/0091 3847.2015.1077098
- 6. DiFiori JP, Benjamin HJ, Brenner JS, et al. Overuse injuries and burnout in youth sports: a position statement from the American Medical Society for Sports Medicine. Br J Sports Med. 2014;48:287-288. https://doi.org/10.1136/ bjsports-2013-093299
- 7. Erickson BJ, Chalmers PN, Dugas JR, et al. Do Major League Baseball team physicians harvest the semitendinosus from the drive leg or landing leg when performing ulnar collateral ligament reconstruction on elite baseball pitchers? Orthop J Sports Med. 2017;5:2325967117713987. https:// doi.org/10.1177/2325967117713987
- 8. Ford GM, Genuario J, Kinkartz J, Githens T, Noonan T. Return-to-play outcomes in professional baseball players after medial ulnar collateral ligament injuries: comparison of operative versus nonoperative treatment based on magnetic resonance imaging findings. *Am J Sports Med.* 2016;44:723-728. https://doi.org/10.1177/0363546515621756
- Garcia GH, Wu HH, Park MJ, et al. Depression symptomatology and anterior cruciate ligament injury: incidence and effect on functional outcome—a prospective cohort study.
 Am J Sports Med. 2016;44:572-579. https://doi.org/10.1177/0363546515612466
- Heyworth BE, Kramer DE, Martin DJ, Micheli LJ, Kocher MS, Bae DS. Trends in the presentation, management, and outcomes of Little League shoulder. Am J Sports Med. 2016;44:1431-1438. https://doi.org/10.1177/0363546516632744
- 11. Hodgins JL, Vitale M, Arons RR, Ahmad CS. Epidemiology of medial ulnar collateral ligament reconstruction: a 10-year study in New York State. Am J Sports Med. 2016;44:729-734. https://doi. org/10.1177/0363546515622407

- Iwame T, Matsuura T, Suzue N, et al. Outcome of an elbow check-up system for child and adolescent baseball players. J Med Invest. 2016;63:171-174. https://doi.org/10.2152/jmi.63.171
- 13. Jayanthi NA, LaBella CR, Fischer D, Pasulka J, Dugas LR. Sports-specialized intensive training and the risk of injury in young athletes: a clinical case-control study. Am J Sports Med. 2015;43:794-801. https://doi.org/10.1177/0363546514567298
- 14. Limpisvasti O, ElAttrache NS, Jobe FW. Understanding shoulder and elbow injuries in baseball. J Am Acad Orthop Surg. 2007;15:139-147. https://doi.org/10.5435/00124635-200703000-00003
- 15. Lyman S, Fleisig GS, Andrews JR, Osinski ED. Effect of pitch type, pitch count, and pitching mechanics on risk of elbow and shoulder pain in youth baseball pitchers. Am J Sports Med. 2002;30:463-468. https://doi.org/10.1177/03635 465020300040201
- Makhni EC, Morrow ZS, Luchetti TJ, et al. Arm pain in youth baseball players: a survey of healthy players. Am J Sports Med. 2015;43:41-

- 46. https://doi.org/10.1177/0363546514555506
- 17. O'Driscoll SW, Lawton RL, Smith AM. The "moving valgus stress test" for medial collateral ligament tears of the elbow. *Am J Sports Med*. 2005;33:231-239. https://doi.org/10.1177/0363546504267804
- 18. Padaki AS, Ahmad CS, Hodgins JL, Kovacevic D, Lynch TS, Popkin CA. Quantifying parental influence on youth athlete specialization: a survey of athletes' parents. Orthop J Sports Med. 2017;5:2325967117729147. https://doi.org/10.1177/2325967117729147
- Padaki AS, Popkin CA, Hodgins JL, Kovacevic D, Lynch TS, Ahmad CS. Factors that drive youth specialization. Sports Health. 2017;9:532-536. https://doi.org/10.1177/1941738117734149
- Pasulka J, Jayanthi N, McCann A, Dugas LR, LaBella C. Specialization patterns across various youth sports and relationship to injury risk. *Phys Sportsmed*. 2017;45:344-352. https://doi.org/10. 1080/00913847.2017.1313077
- **21.** Pennock AT, Pytiak A, Stearns P, et al. Preseason assessment of radiographic abnormalities in

- elbows of Little League baseball players. *J Bone Joint Surg Am.* 2016;98:761-767. https://doi.org/10.2106/JBJS.15.01017
- 22. Pytiak AV, Stearns P, Bastrom TP, et al. Are the current Little League pitching guidelines adequate? A single-season prospective MRI study. Orthop J Sports Med. 2017;5:2325967117704851. https://doi.org/10.1177/2325967117704851
- Smucny M, Kolmodin J, Saluan P. Shoulder and elbow injuries in the adolescent athlete. Sports Med Arthrosc Rev. 2016;24:188-194. https://doi. org/10.1097/JSA.0000000000000131
- 24. Smucny M, Westermann RW, Winters M, Schickendantz MS. Non-operative management of ulnar collateral ligament injuries in the throwing athlete. *Phys Sportsmed*. 2017;45:234-238. https://doi.org/10.1080/00913847.2017.1358585

BROWSE Collections of Articles on JOSPT's Website

JOSPTs website (www.jospt.org) offers readers the opportunity to browse published articles by Previous Issues with accompanying volume and issue numbers, date of publication, and page range; the table of contents of the Upcoming Issue; a list of available accepted Ahead of Print articles; and a listing of Categories and their associated article collections by type of article (Research Report, Case Report, etc).

Features further curates 3 primary *JOSPT* article collections: Musculoskeletal Imaging, Clinical Practice Guidelines, and Perspectives for Patients, and provides a directory of Special Reports published by *JOSPT*.

EDITOR'S NOTE

2017 JOSPT Award Recipients

GUY G. SIMONEAU, PT, PhD, ATC, FAPTA Interim Editor-in-Chief

J Orthop Sports Phys Ther 2018;48(5):348. doi:10.2519/jospt.2018.0104

uring the American Physical Therapy Association's Combined Sections Meeting in New Orleans, LA in February 2018, JOSPT recognized the authors of the most outstanding research and clinical practice manuscripts published by JOSPT during 2017.

The following annual awards, presented for 15 years by the *Journal of Orthopaedic & Sports Physical Therapy*, recognize the most outstanding articles published in the last calendar year. An award committee of 5 (2 from the Orthopaedic Section, 2 from the Sports Physical Therapy Section, and 1 from the Editorial Board) selected the award recipients from a strong field of eligible articles.

The Journal of Orthopaedic & Sports Physical Therapy's 2017 George J. Davies–James A. Gould Excellence in Clinical Inquiry Award

The George J. Davies–James A. Gould Excellence in Clinical Inquiry Award recognizes the best article published in the *Journal* during a calendar year among the categories of clinical research reports (ie, articles that carry a "Level of Evidence" at the end of the abstract), clinical commentaries, case reports, and resident's case problems.

The 2017 George J. Davies-James A. Gould Excellence in Clinical Inquiry Award was presented to Noa Ben-Ami, PT, PhD; Gabriel Chodick, MHA, PhD; Yigal Mirovsky, MD; Tamar Pincus, MPhil, MSc, PhD; and Yair Shapiro, MD, PhD, for their February 2017 article "Increasing Recreational Physical Activity in Patients With Chronic Low Back Pain: A Pragmatic Controlled Clinical Trial."

The Journal of Orthopaedic & Sports Physical Therapy's 2017 JOSPT Excellence in Research Award

The JOSPT Excellence in Research Award recognizes the best article published in the *Journal* during a calendar year within the category of nonclinical research reports or brief reports (ie, articles that do not carry a "Level of Evidence" at the end of the abstract) and clinical commentaries on research topics.

The 2017 JOSPT Excellence in Research Award was presented to Sanneke Don, PT, MPT; Margot de Kooning, PT, PhD; Lennard Voogt, PT, MT, PhD; Kelly Ickmans, PT, PhD; Liesbeth Daenen, PT, PhD; and Jo Nijs, PT, MT, PhD, for their March 2017 article "The Effect of Visual Feedback of the Neck During Movement in People With Chronic Whiplash-Associated Disorders: An Experimental Study."²

These articles were selected from among many high-quality publications that have high potential for impact on the fields of musculoskeletal and sports-related injury, rehabilitation, and health.

Congratulations to these 2017 award recipients for their outstanding work. We look forward to JOSPT continuing to publish and highlight excellent research with clinical implications for practitioners.

The 2017 JOSPT Excellence in Clinical Inquiry Award was presented to Dr. Noa Ben-Ami (center) and Dr. Yair Shapiro (right) by Interim Editor-in-Chief Guy Simoneau (left).

REFERENCES

- Ben-Ami N, Chodick G, Mirovsky Y, Pincus T, Shapiro Y. Increasing recreational physical activity in patients with chronic low back pain: a pragmatic controlled clinical trial. *J Orthop* Sports Phys Ther. 2017;47:57-66. https://doi. org/10.2519/jospt.2017.7057
- 2. Don S, de Kooning M, Voogt L, Ickmans K, Daenen L, Nijs J. The effect of visual feedback of the neck during movement in people with chronic whiplash-associated disorders: an experimental study. *J Orthop Sports Phys Ther*. 2017;47:190-199. https://doi.org/10.2519/jospt.2017.6891