EFFECT OF MENTAL IMAGERY IN ENHANCING SOCCER PASSING AND CONTROL SKILLS IN COLLEGIATE LEVEL PLAYERS: A RANDOMIZED CONTROLLED TRIAL

by

TANMAYA MILIND SWATI KAPRE

Dissertation Submitted to the **Utkal University, Bhubaneswar, Odisha**.

In partial fulfillment of the requirements for the degree of

MASTER OF PHYSIOTHERAPY (MPT)

ln

SPORTS

Under the guidance of

Prof. Joseph Oliver Raj, Dean, ABSMARI

ABHINAV BINDRA SPORTS MEDICINE AND RESEARCH INSTITUTE BHUBANESWAR 2021-2023

DECLARATION BY THE CANDIDATE

I hereby declare that this dissertation/thesis entitled "Effect of mental imagery in

enhancing soccer passing and control skills in collegiate level players: a

Randomized Controlled Trial" is a bonafide and genuine research work carried

out by me under the guidance of Prof. Joseph Oliver Raj, Dean, Abhinav Bindra

Sports Medicine and Research Institute.

Date:

Place:

Signature of the Candidate (TANMAYA KAPRE)

II

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled "Effect of mental imagery in

enhancing soccer passing and control skills in collegiate level players: a

Randomized Controlled Trial" is a bonafide research work done by Tanmaya

Kapre in partial fulfillment of the requirement for the degree of MPT -Master of

Physiotherapy.

Date : Place:

Signature of the Guide **Prof. Joseph Oliver Raj, Dean, ABSMARI.**

Ш

ENDORSEMENT BY THE PRINCIPAL

This is to certify that the dissertation entitled "Effect of mental imagery in enhancing soccer passing and control skills in collegiate level players: a Randomized Controlled Trial" is a bonafide research work done by Tanmaya Kapre under the guidance of Prof. Joseph Oliver Raj, Dean of Abhinav Bindra Sports Medicine and Research Institute.

Date : Place:

Seal and signature **Dr. Chinmaya Kumar Patra,** Principal, ABSMARI.

ENDORSEMENT BY THE DEAN

This is to certify that the dissertation entitled "Effect of mental imagery in

enhancing soccer passing and control skills in collegiate level players: a

Randomized Controlled Trial" is a bonafide research work done by Tanmaya

Kapre under the guidance of Prof. Joseph Oliver Raj, Dean of Abhinav Bindra

Sports Medicine and Research Institute.

Date: Place:

Seal and signature Prof. Joseph Oliver Raj, Dean, ABSMARI.

V

COPYRIGHT

Declaration by the Candidate

I, Tanmaya Milind Swati Kapre, of Abhinav Bindra Sports Medicine And Research Institute, hereby declare that the Utkal University, and Abhinav Bindra Sports Medicine & Research Institute Odisha, Bhubaneswar shall have the perpetual rights to preserve, use and disseminate this dissertation / thesis in print or electronic format for academic / research purpose. Date: Place: Signature of the Candidate

Utkal University, Odisha, Bhubaneswar

(TANMAYA KAPRE)

ACKNOWLEDGEMENT

I would like to express my profound gratitude to Dr. Apjit S. Bindra, Chairman, Mr. Abhinav A. Bindra, Founder and Dr. Digpal Ranawat, Executive Director of Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar, for giving us the facilities to conduct the research.

I also express my utmost gratitude to my Research Guide, **Prof. Joseph Oliver Raj**, Dean, Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar for his invaluable advice, constructive criticism and continuous guidance which enabled successful completion of this research study.

I would specially like to thank Dr. Chinmaya Kumar Patra, Principal, Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar, who took deep interest in our study and made sure that data collection takes place smoothly.

I would like to thank Dr. Deepak Kumar Pradhan and Ms. Charuhasini Mahapatra, for helping me with the statistics of this study which was one of the major factors in project work.

I would also like to thank Mr. Gouranga Kumar Padhy, Librarian for his continuous help and motivation during the study.

I wish to acknowledge with thanks, the support given to me by all my juniors and

also appreciate their excellent cooperation and interest in this study.

I thank all the participants of the study for their co-operation and patience

throughout the study.

I am grateful to the Almighty, Dr. Aniruddha Joshi and Dr. Suchit Dattopadhye for

their kind blessings and also for giving me the power and inner strength for

completing the study.

I am also deeply indebted to my parents for their blessings, continuous

encouragement and motivation to complete my research dissertation.

Date:

Place:

Signature of the Candidate

(TANMAYA KAPRE)

VIII

LIST OF ABBREVIATIONS USED

(In alphabetical order)

CONSORT: Consolidated Standards of Reporting Trials

CTRI: Clinical Trials Registry-India

LSPT: Loughborough Soccer Passing Test

MI: Mental Imagery

MIQ: Movement Imagery Questionnaire

PETTLEP: Physical Environment Task Timing Learning Emotion Perspective

LIST OF TABLES

S. NO.	TABLES	PAGES
01	Demographic data of subjects	17
02	Within group analysis of LSPT for both Experimental and Control group	18
03	Within group analysis of McDonald soccer test for both Experimental and Control group.	19
04	Between group analysis of Experimental and Control groups for both LSPT and McDonald soccer test outcome measures.	20
05	Independent samples effect sizes	21

LIST OF FIGURES AND GRAPHES

S. NO.	FIGURES AND CHARTS	PAGES
01	Figure of LSPT	13
02	Figure of McDonald Soccer skill test	14
03	Chart of Demographic data of subjects	17
04	Chart of Within group analysis of LSPT for both Experimental and Control group	18
05	Chart of Within group analysis of McDonald soccer test for both Experimental and Control group.	19
06	Chart of Between group analysis of Experimental and Control groups for both LSPT and McDonald soccer test outcome measures.	20

ABSTRACT

Background: Mental imagery in sports, is mental rehearsal of a task to re-create a sporting scenario without any muscular movement, which is used to enhance sporting performance. In open sports like soccer, wherein the environment keeps changing, a skill like passing and control, needs precision, accuracy and speed. Imagery previously, has been used in athletes to maintain strength and power component, during forced detraining, in rehabilitation and also to perfect a particular skill. However, it has not been extensively used in the Indian setup. Also a combination of external and internal imagery is also less researched. This study aims to see the effect of mental imagery in enhancing soccer passing and control skill in male collegiate-level soccer players.

Methodology: The study evaluated 56 male collegiate soccer athletes, allocated into imagery and control group. Both the groups were tested for their passing and control skills using Loughborough soccer passing test (LSPT) and McDonald Soccer test, as primary and secondary outcome measures respectively. This was followed by both external and internal mental imagery. Post-intervention LSPT and McDonald soccer test scores were taken again. Data was analysed using Wilcoxon signed rank test for within group statistical analysis of the two means pre and post-intervention and Mann-Whitney U test was used for between group statistical analysis.

Results: The result of the study showed that there was a significant improvement in the LSPT and McDonald soccer test score in the imagery group.

<u>Conclusion:</u> Mental imagery can be a beneficial tool in improving skill-specific training in collegiate-level athletes. Imagery hence can be used as an important tool for maintaining focus on skillsets, strength and power post-injury and surgery, during detraining and return to sport.

Keywords: male; soccer; return to sport; athletes; sports; mental imagery

TABLE OF CONTENTS

CONTENTS	PAGE NO.
1. Introduction	1
2. Review of Literature	6
3. Aims and Objectives	8
4. Methodology	9
5. Results	22
6. Discussion	23
7. Conclusion	28
8. References	29
9. Annexure	33

PLAYERS: A RANDOMIZED CONTROLLED TRIAL

Introduction:

Mental Imagery:

Mental Imagery (MI) is a psychological tool used to create mental representation of a task or a situation, without actually doing the task and without any sensory stimuli^(1,2).

Role of Mental Imagery in Sports:

- Mental imagery engages multisensorial pathways to recreate a sporting scenario in our minds to improve sport performance.
- MI is used at the time of training, competition, injury, detraining, etc. (3-8)

Theories of Mental Imagery⁽⁹⁾:

As per the 'Psychoneuromuscular theory', the Mental Imagery-

- Improves athlete's performance- Access to motor cortex of the brain with the help of motor imagery.
- Helps in gaining motor expertise leading to neural reorganizations of networks in the brain which are activity-dependent
- Helps in controlling both real and imaginary performances⁽¹⁰⁾.

As per the 'theory of functional equivalence'-

- When a person performs a particular task, or when he/she images himself/herself performing the same task, similar areas of the brain get activated.
- It strengthens neural activity leading to improved execution of the desired skill.
- Physiological responses like heart rate, muscle activity, ventilation frequency also increase during mental imagery⁽¹¹⁾.

Types of Mental Imagery- Internal and External imagery⁽¹²⁾:

Internal Imagery:

- It is also called kinaesthetic imagery- most commonly delivered in the form of an audio script.
- Athlete imagines himself from a first-person's perspective with focus on the simulated scenario.
- Includes not just visual but also spatial and kinaesthetic component of the action^(12,13).

External Imagery:

Here, athlete takes the view of a spectator (a third-person's perspective),
 watching the movement being performed by someone else or even by
 himself/herself in a video in front of them^(14,15).

Categories of Sports- Closed and Open:

Closed:

- External factors don't influence the athlete's performance.
- Every move can be pre-planned. (Example Javelin throw, Shooting, Springboard Diving).
- In sports like basketball, the 'free-throw' component of it can be treated as a closed element of the game.

Open:

- In sports like football, hockey, etc., the environment keeps changing and nothing can be predicted.
 - Most of the team sports fall under the 'Open Sports' category while most of the individual games under 'Closed Sports' category⁽¹⁶⁾.
 - Although previous studies have suggested the benefits that the athletes can get by using mental imagery, it has mostly been used in closed sports.
 - With the constantly changing environment and other factors in Open Sports like soccer, it has become more crucial for athletes to resort to or utilize various other strategies including cognitive and psychological techniques, multiple senses in a precise manner and the right time to achieve success in their sport.

➤ **Mental imagery** may prove to be a beneficial tool in improving the athletes' skills in all kinds of scenarios⁽¹⁷⁾.

Need of the study:

Mental imagery studies have previously been used in athletes to maintain strength and power performances during forced detraining. Imagery is also used during rehabilitation and return to sport after an injury. Most of the imagery studies mainly focus on elite level players but no study has been used for collegiate level players in the Indian setup till date. Very few studies have researched on an open sport wherein the environment keeps changing. A combination of external and internal imagery is also less researched.

Review of Literature:

- Antonio Dello lacono et al. (2021), conducted a study on effect of mental imagery (MI) training on strength and power performances in athletes during detraining. The study concluded that during periods of forced detraining, MI practice was a viable tool to maintain and increase performance capacity among professional athletes. (3)
- Donatella Di Corrado et al. (2020), conducted a study on Mental Imagery skills in competitive young athletes and non-athletes. It was concluded that to improve learning and performance, athletes and coaches should incorporate the regular practice of mental imagery in their training programs.
- Leonardo de Sousa Fortes at al. (2019), conducted a study on Effect of
 motor imagery training on tennis service performance in young tennis
 athletes. It was concluded that motor imagery training would be considered
 an effective strategy to enhance the tennis service performance among
 tennis players. (10)
- Bianca A. Simonsmeier et al. (2017), conducted a study on The effect of Motor Imagery training on performance and mental representation of 7-15 year old gymnasts of different levels of expertise. The study concluded that mental imagery improved the performance of young athlete but only for the high-expertise athletes.⁽¹⁹⁾
- Mohammed M et al. (2015), conducted a study in which McDonald soccer skill test was used to find the push pass of ability of the players.

- Experimental design was used for this research to find out the difference. The test was constructed on college men and the validity coefficient of the test ranged from (0.63 to 0.94). (20)
- Andrea Gaggioli et al. (2013), conducted study to see Benefits of
 Combined mental and physical training in learning a complex motor skill in
 basketball. The study concluded that Mental practise condition improved
 coordination and movement accuracy, suggesting the potential
 effectiveness of this approach in training complex motor skills. (14)
- Wan X. Yao et al. (2013), conducted a study to compare the effect of
 Kinesthetic imagery training with that of visual imagery training on forceful
 muscle contractions increase brain signal and muscle strength. They
 concluded that the kinaesthetic imagery intervention was effective in
 improving voluntary muscle strength without physical exercise. (13)
- Phillip G. Post et al. (2012), conducted a study to see The Effects of imagery training on swimming performance. They concluded that the benefits of imagery observed with discrete/serial tasks may also extend to continuous types of tasks like swimming.⁽²¹⁾
- CJ Olsson et al. (2008), conducted a study on Internal imagery training in active high jumpers. It was concluded that Internal imagery training may be used to improve a component of a complex motor skill. (16)
- Ajmol Ali et al. (2007), conducted a study to check Reliability and Validity
 of two tests of soccer skill. It was concluded that LSPT is a valid and reliable
 measures to assess differences in soccer skill performance. (22)

Aims and Objectives of the study:

Aim:

To see the effect of mental imagery in improving soccer passing and control skills in collegiate-level male soccer players.

Objectives:

- To see the effect of regular soccer skills training on passing and control skill using LSPT and McDonald soccer skill test.
- 2. To see the effect of mental imagery along with regular soccer skills training on passing and control skill using LSPT and McDonald soccer skill test.
- To compare the effect of regular skills and mental imagery along with regular football skills on passing and control skill using LSPT and McDonald soccer skill test.

Hypothesis:

Null hypothesis:

 H₀₁: There is no significant effect of mental imagery in improving passing and control skills in collegiate level soccer players.

Alternate hypothesis:

 H₁₁: There is a significant effect of mental imagery in improving passing and control skills in collegiate level soccer players.

Methodology:

- Study design: Randomized Controlled Trial
- Study population: Collegiate level soccer players
- Sample size: 60
- Sampling technique: Purposive sampling
- Study setting: Abhinav Bindra Sports Medicine and Research Institute,
 Bhubaneswar, Odisha.
- Study duration: 1 year

Inclusion criteria:

- Male collegiate level soccer players who are a part of the college team,
 taking part in competitions (based on Tegner activity level scale- level 9)
- Age: 17-20 years
- Athletes playing/practicing soccer for minimum 7hours/week for minimum 1 year.

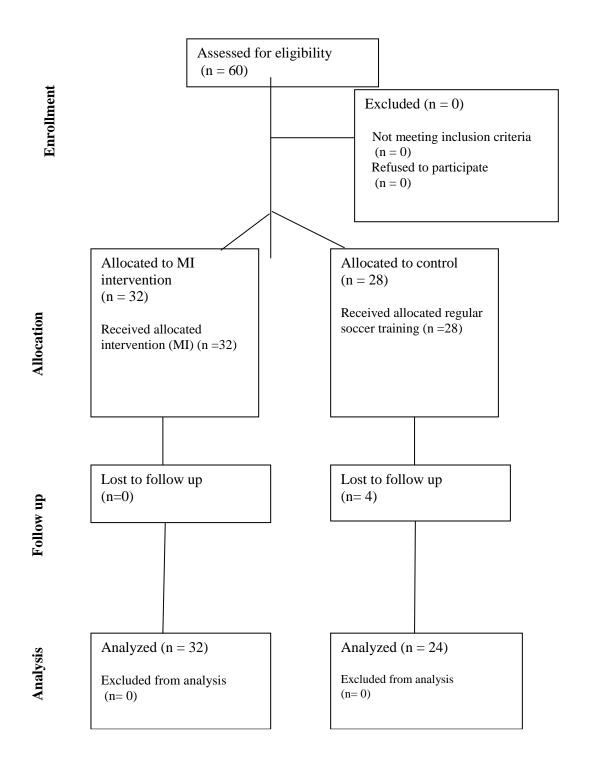
Exclusion criteria:

- Goalkeepers
- Athletes having any recent injury, fracture, open wounds over the past 6 months. (using Nordic questionnaire).
- Athletes with pre-existing neurological condition affecting cognition.

Materials used:

- Video tape (skill training videos)
- Audio script of mental imagery
- Stop watch
- · Cones, measuring tape
- 4 gymnasium benches
- 3 soccer balls
- Coloured cards
- chalks, paper and pens.

Sample selection and screening:


Ethical clearance for the present study was obtained by the Institutional Ethical Committee. A total of 60 collegiate male soccer players were selected according to the selection criteria. All the subjects were explained the procedure of the study and informed consent was taken followed by demographic data of the subjects.

Subjects were randomly allocated into two groups of experimental and control. The experimental group had 32 players (mean age= 18.15±0.36) while the control group had 28 players (mean age= 18.16±0.81).

Procedure:

Pre-intervention outcome measures scores were taken for both the groups using LSPT and McDonald soccer skill test. The control group underwent regular football skills training while the experimental group underwent mental imagery training which comprised of external (videotape) as well as internal (audio script) imagery intervention for about 10-15minutes for 3 weeks and 4 sessions/week (total 12 sessions). 4 subjects from the control group dropped-out mid-intervention due to certain reasons. Post-intervention outcome measure scores were taken again for both the groups using the same outcome measures followed by data analysis for the subjects who completed the study (per protocol analysis).

CONSORT Flowchart

Outcome measures:

Pre and Post-intervention:

Primary outcome measure:

Loughborough Soccer Passing Test (LSPT)

(Reliability is 0.73)(22)

Players are required to perform 16 passes comprising 8 long and 8 short passes depending on the coloured card called out by the investigator from within the designated passing zone (between the two rectangles in the middle area) as fast as they can with precision and accuracy. (22)

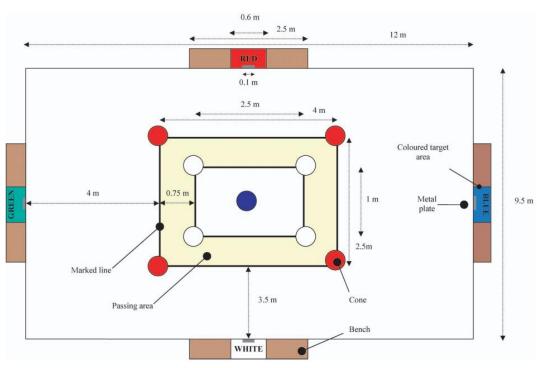


Figure 1. Schematic representation of the Loughborough Soccer Passing Test (LSPT).

Figure 1: LSPT(22)

Secondary outcome measure:

McDonald Soccer skill test

(Validity coefficient of the test ranges from 0.63 to 0.94)(20)

The players are instructed to make maximum number of kicks in 30 seconds by keeping the ball in control while using any type of kick and ball control method. In case the ball fails to rebound sufficiently, the player has the option to either retrieve the same ball or take one of the extra balls with the help of either hands or feet which is kept 9 feet behind the restraining line.

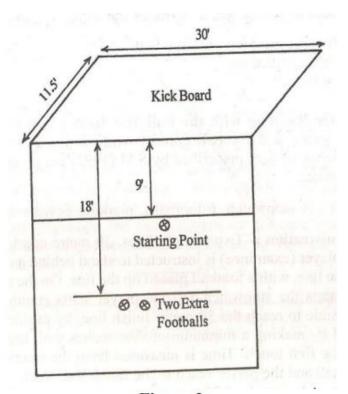


Figure 2
Measurement of test short pass and receiving kickboard

Figure 2: McDonald soccer skill test (20)

Sample size of Estimation:

 $N = 2k SD^2/d^2$

Zα=0.5

 $Z\beta(1-\beta)=80\%$

Confidence interval= 95%

K=10.5

SD (Standard Deviation)= 6.2

d= (Standard error measurement (SEM))= 2.2

 $n = 26.4 \sim 27 + 15\%$ drop-outs = 30/group.

Statistical Analysis:

Data was analyzed using the statistical package **SPSS 22.0** (SPSS Inc., Chicago, IL) and level of significance was set at **p<0.05**.

Normality was taken out using kolomogorov-smirnov test.

Data was not normally distributed.

Inferential statistics to find out the statistical difference within groups (pre and post-intervention) was done using Wilcoxon signed rank test and analysis for between groups (experimental and control) inferential statistics was done using Mann-Whitney U test.

Table 1: Demographic data of the subjects:

	Experimental	Control
Mean age	18.15	18.16
SD	0.36	0.81

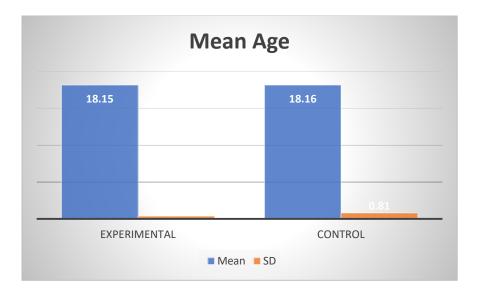


Chart 1: Mean age for both Experimental and Control group

Table 2: Within group analysis of Loughborough soccer passing test (LSPT) for both Experimental and Control group:

	Experimental	Control
Pre	1.29	1.2
Post	1.05	1.21
р	0.000	0.132
value		

p<0.05 is statistically significant

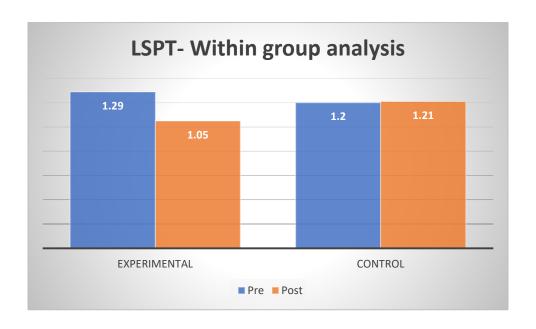


Chart 2: LSPT within group analysis (pre and post-intervention)

Table 3: Within group analysis of McDonald soccer test for both Experimental and Control group:

	Experimental	Control
Pre	22.56	21.7
Post	24.4	21.08
р	0.000	0.054
value		

p<0.05 is statistically significant

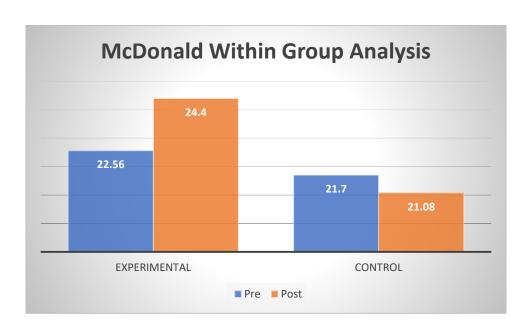
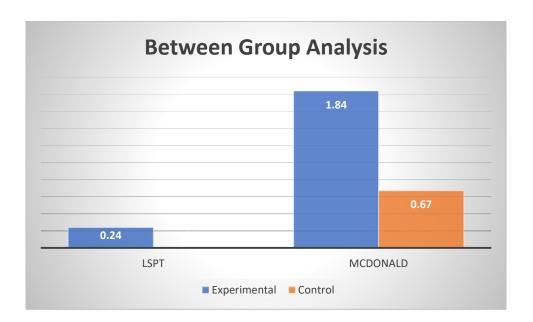



Chart 3: McDonald soccer test within group analysis (pre and post-intervention)

Table 4: Between group analysis of Experimental and Control groups for both LSPT and McDonald soccer test outcome measures:

	LSPT	McDonald
	difference	difference
	(pre-post)	(pre-post)
Experimental	0.24	1.84
Control	0.01	0.67
p value	0.000	0.000

p<0.05 is statistically significant

<u>Chart 4:</u> Between group analysis of Experimental and Control groups (LSPT and McDonald soccer test).

Table 5:

Independent Samples Effect Sizes

		Standardizer ^a		95% Confide	nce Interval
			a Point Estimate	Lower	Upper
LSPT Diff	Cohen's d	.25110	.974	.410	1.530
	Hedges' correction	.25465	.960	.404	1.509
	Glass's delta	.28240	.866	.274	1.443
McDiff	Cohen's d	1.91107	-1.390	-1.975	794
	Hedges' correction	1.93814	-1.371	-1.947	783
	Glass's delta	2.43614	-1.090	-1.697	467

The denominator used in estimating the effect sizes.
 Cohen's d uses the pooled standard deviation.
 Hedges' correction uses the pooled standard deviation, plus a correction factor.
 Glass's delta uses the sample standard deviation of the control (i.e., the second) group.

Effect size value for the outcome measure of LSPT (difference between pre and post-intervention) between the experimental and control group is 0.25110 which is small indicating that the difference between the two groups with respect to LSPT is small.

Effect size value for the outcome measure of McDonald (difference between pre and post-intervention) between the experimental and control group is 1.91107 which is high indicating large difference between the two groups with respect to McDonald.

Results:

Statistical difference (p<0.05) was found within the experimental group (pre and post-intervention) for both the outcome measures i.e., Loughborough soccer passing test (LSPT) and McDonald soccer test as is expressed in Table 2 and 3 and in chart 2 and 3.

There was no statistical difference found within the control group for both the outcome measures.

Statistical difference was also found between the experimental and control group for the difference calculated between both the outcome measures (LSPT (prepost)) and McDonald soccer test (pre-post)) as is expressed in Table 4 and chart 4.

For the LSPT outcome measure, the effect size was 0.25110 indicating small difference between the control and experimental group.

For the McDonald outcome measure, the effect size was 1.91107 indicating large difference between the control and experimental group.

Hence the null hypothesis is rejected and alternate hypothesis is accepted which states that there is a significant effect of mental imagery in improving passing and control skills in collegiate level soccer players.

Discussion:

This study comprised a total of 56 collegiate male athletes out of which 32 were allocated in the experimental group undergoing mental imagery (MI) along with regular football training and the rest 24 were allocated in the control group undergoing only regular football training. The purpose of the study was to see the effect of mental imagery (MI) intervention in enhancing soccer passing and control skills. Consistent with the main hypothesis of this study, findings indicate that mental imagery does help in improving passing and control skills in collegiate level soccer players. These findings corroborate with various previous research studies which showed improvement in motor performance using mental imagery training (10,14,16,17). The first reason for achieving a significant improvement in the experimental group could be that a supervised session of imagery before the regular training in the form of a warm-up, helped the athletes to easily incorporate the technique in their regular training schedule without making any major changes (17). Secondly, the utilization of both, video tape and audio script, i.e., a combined effect of external and internal form of imagery, might have reinforced the imagery of passing and control skill, making stronger neural networks in the brain leading to more clarity in the execution of the skill. According to previous studies, giving external imagery (video tape) alone, proves to be more of a motivational factor and hence combining internal imagery (audio script) with external helps in gaining the cognitive benefits of MI (18,23). The imagery script that was used for this study was in accordance with the PETTLEP model of imagery which is proven to be a beneficial format for athletes undergoing internal imagery training (11,24). Sports

psychology research has demonstrated the benefits of imagery in athletic performance on discrete/serial tasks which is in line with the results of this study (10,14,16-19,21,24). The primary outcome measure, Loughborough soccer passing test (LSPT), is a test that measures passing accuracy, precision, along with taking time component (time to complete 16 passes) into consideration (22). After a 3 week protocol of MI, comprising a total of 12 sessions (4 sessions/week), the experimental group athletes, showed an improvement in the LSPT's component of passing and control precision, accuracy and the time taken to complete the test became shorter. While the control group athletes, who also underwent regular football skills training, without MI, took either the same time to complete the test as compared to their baseline values, or longer by a few seconds. The precision and accuracy component of LSPT in the control group remained more or less near the baseline values. One of the reason for the increased time taken to complete the test could be the low adherence towards the practice sessions. Few athletes from the control group could not keep up with the regular football practice sessions as they went home for holidays. The secondary outcome measure was McDonald soccer passing test which tested the speed with which the athletes could kick maximum number of times on the wall from a designated distance (20). Here as well, the experimental group athletes showed increase in the number of kicks and speed post MI intervention as compared to the control group. Few players in the control group were older in age by a few years while all the players in the experimental group were younger. According to a study done by Tohid Seif-Barghi et. al, younger soccer players, use more of cognitive specific and cognitive general

imagery as compared to their older counterparts⁽¹⁷⁾. It is worth noting that this study comprised collegiate-level athletes, who have never undergone any kind of MI or sport psychology training before. According to previous studies, MI was found more beneficial in elite-level athletes as it would help them in improving the scope of fine-skilled movements which generally gives them the extra edge at elite-level competitions⁽¹⁷⁻¹⁹⁾. However there are studies which suggest that younger athletes have capabilities of being great imagers which is why they can engage in imagery more frequently and strongly as compared to older adult players, who are more interested in the motivational component of imagery than the cognitive aspect of it and which is in line with the results of this study^(17,21). A study done by Bianca A. Simonsmeier et al. counters this concept by saying that more the expertise and experience level of an athlete, more is the imagery ability of the athlete and hence more will be the effect of MI intervention in them as compared to novice players⁽¹⁹⁾. Previous studies have also mentioned the concept of individual differences, which doesn't consider age or expertise level but states that factors like genetic activity, neural activity and behaviour, along with environmental factors like physical, social and cultural differences may affect physical performance parameters post-MI training and hence should also be considered⁽¹⁶⁾. As far as the frequency of MI training and training duration is considered, different studies have mentioned different time periods for giving MI training subject to the age, level of play and type of MI intervention given to the athletes. However, according to a review study done by Jesmy Jose et al., the duration of the MI intervention should not be less than 1 week as it may not show much improvement (25). Along with positive effects of MI

on skill development demonstrated in this study, there were a few limitations as well:

- There was a possibility of cross-contamination between imagery group and control group as both the groups belonged to the same study setting.
- Ability of the athletes to use imagery was not assessed pre-intervention which is an important factor considering individual differences.
- Our study involved only male athletes which limits generalizability of findings.

Suggestions for future scope of the study includes:

- Feedback sessions can be included post every session of MI as it might help the athletes to process and reinforce the information even better.
- New video tapes and diverse audio scripts should be made available, covering each and every aspect of the technique to be mastered be it discrete or continuous. The athletes should be encouraged to make customized scripts based on their self-analysis on where they need to improve and in which technique.
- More studies on MI training should be encouraged on open sports or sports containing continuous tasks (eg. swimming) which require continuous focus throughout the competition.
- Studies should also focus on novice players who demonstrate greater difficulty in performing a synchronized movement and also paediatric athletes.

- Studies should include a pre-screening tool to assess imagery ability (eg. Movement Imagery Questionnaire (MIQ)).
- Biomechanical analysis of movement can be added as an objective outcome measure.
- Effect of a higher intensity of movement, with more MI sessions can be assessed.

Conclusion:

The study concludes that using mental imagery along with regular football training helps in enhancing soccer passing and control skills in collegiate-level athletes. Therefore, imagery proves to be an important tool for maintaining focus on skillsets and hence can also be used to maintain strength and power post-injury and surgery, during detraining and return to sport.

References:

- Budnik-Przybylska D, Kastrau A, Jasik P, Kaźmierczak M, Doliński Ł, Syty P, Łabuda M, Przybylski J, Di Fronso S, Bertollo M. Neural oscillation during mental imagery in sport: an olympic sailor case study. Frontiers in Human Neuroscience. 2021 Jun 1;15:669422.
- Miller M, Munroe-Chandler K. Imagery use for injured adolescent athletes: Applied recommendations. Journal of Sport Psychology in Action. 2019 Jan 2;10(1):38-46.
- Iacono AD, Ashcroft KU, Zubac DA. Ain't just imagination! Effects of motor imagery training on strength and power performance of athletes during detraining. Medicine & Science in Sports & Exercise. 2021 Nov 1;53(11):2324-32.
- Multhaupt G, Beuth J. The Use of Imagery in Athletic Injury Rehabilitation. A Systematic Review. German Journal of Sports Medicine/Deutsche Zeitschrift fur Sportmedizin. 2018 Mar 1;69(3).
- Driediger M, Hall C, Callow N. Imagery use by injured athletes: A
 qualitative analysis. Journal of sports sciences. 2006 Mar 1;24(3):26172.
- Green LB. The use of imagery in the rehabilitation of injured athletes.
 The Sport Psychologist. 1992 Dec 1;6(4):416-28.
- 7. Rodriguez RM, Marroquin A, Cosby N. Reducing fear of reinjury and pain perception in athletes with first-time anterior cruciate ligament

- reconstructions by implementing imagery training. Journal of sport rehabilitation. 2019 May 1;28(4):385-9.
- Richter J, Gilbert JN, Baldis M. Maximizing strength training performance using mental imagery. Strength & Conditioning Journal. 2012 Oct 1;34(5):65-9.
- Glisky ML, Williams JM, Kihlstrom JF. Internal and external mental imagery perspectives and performance on two tasks. Journal of Sport Behavior. 1996 Jan 1;19(1):3-19.
- 10. Fortes LD, Almeida SS, Nascimento Junior JR, Vieira LF, Lima-Júnior D, Ferreira ME. Effect of motor imagery training on tennis service performance in young tennis athletes. Revista de psicología del deporte. 2019;28(1):0157-168.
- 11. https://www.birmingham.ac.uk/documents/college-les/sportex/imagery/introductiontoimagery-teachersnotes.pdf
- 12. Dun K, Burton L. Kinesthetic imagery: does it exist and how can we measure it?. InProceedings of the ISSP 11th World Congress of Sport Psychology: Promoting Health and Performance for Life 2005 Jan 1.
- 13. Yao WX, Ranganathan VK, Allexandre D, Siemionow V, Yue GH. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Frontiers in human neuroscience. 2013 Sep 26;7:561.

- 14. Gaggioli A, Morganti L, Mondoni M, Antonietti A. Benefits of combined mental and physical training in learning a complex motor skill in basketball.
- 15. Brogaard B, Gatzia DE. Unconscious imagination and the mental imagery debate. Frontiers in psychology. 2017 May 23;8:799.
- 16. Olsson CJ, Jonsson B, Nyberg L. Internal imagery training in active high jumpers. Scandinavian journal of psychology. 2008 Apr;49(2):133-40.
- 17. Seif-Barghi T, Kordi R, Memari AH, Mansournia MA, Jalali-Ghomi M.

 The effect of an ecological imagery program on soccer performance of elite players. Asian journal of sports medicine. 2012 Jun;3(2):81.
 - Ali A, Williams C, Hulse M, Strudwick A, Reddin J, Howarth L, Eldred J, Hirst M, McGregor S. Reliability and validity of two tests of soccer skill. Journal of sports sciences. 2007 Nov 1;25(13):1461-70.
- 18. Di Corrado D, Guarnera M, Guerrera CS, Maldonato NM, Di Nuovo S, Castellano S, Coco M. Mental imagery skills in competitive young athletes and non-athletes. Frontiers in psychology. 2020 Apr 17;11:633.
- 19. Simonsmeier BA, Frank C, Gubelmann H, Schneider M. The effects of motor imagery training on performance and mental representation of 7to 15-year-old gymnasts of different levels of expertise. Sport, Exercise, and Performance Psychology. 2018 May;7(2):155.
- 20. Mohammed M, Deshpande M. Effect of football training program on technical performance of short pass and receiving the ball of

- maharashtriya mandals pune vyayamshala players. International Journal of Science and Research (IJSR). 2015;4(7).
- 21. Post P, Muncie S, Simpson D. The effects of imagery training on swimming performance: An applied investigation. Journal of Applied Sport Psychology. 2012 Jul 1;24(3):323-37.
- 22. Ali A, Williams C, Hulse M, Strudwick A, Reddin J, Howarth L, Eldred J, Hirst M, McGregor S. Reliability and validity of two tests of soccer skill.

 Journal of sports sciences. 2007 Nov 1;25(13):1461-70.
- 23. Filgueiras A, Quintas Conde EF, Hall CR. The neural basis of kinesthetic and visual imagery in sports: an ALE meta– analysis. Brain imaging and behavior. 2018 Oct;12:1513-23.
- 24. Norouzi E, Norouzi Seyed Hossini R, Afroozeh MS, Vaezmosavi M, Gerber M, Puehse U, Brand S. Examining the effectiveness of a PETTLEP imagery intervention on the football skill performance of Novice athletes. Journal of Imagery Research in Sport and Physical Activity. 2019 Oct 9;14(1):20180010.
- 25. Jose J, Joseph MM, Matha M. Imagery: It's effects and benefits on sports performance and psychological variables: A review study. International Journal of Physiology, Nutrition and Physical Education. 2018;3(2):190-3.

ANNEXURE

Consent Form

l,	_, confirm that I have understood about the mental imagery
procedure and its pote	ntial benefits on athletes as explained by Miss Tanmaya
Kapre and is as mention	ned in her study which is taking place under the guidance
of Prof. Joseph Oliver	Raj, Dean, Abhinav Bindra Sports Medicine and Research
Institute (ABSMARI). I u	understand that my participation is voluntary and I'm free to
withdraw at any time, w	rithout giving any reason.
I understand that confid	lentiality will be maintained.
I voluntarily agree to a	nd give my consent to be a part of the above mentioned
study.	
(signature)	date)

Copy of Ethical Committee Clearance certificate

A Unit of the Abhinav Binara Foundament Posts
Recognised by DMET, Health & FW Dept., Govt. of Odisha, Affiliated to Utkal University
Recognised by Odisha State Council for Occupational Therapy and Physiotherapy

Head Office:

Plot No.-107, Sector-82 JLPL Industrial Area, Sahibzada Ajit Singh Nagar, Punjab - 140306 +91 99156 31755 principal@absmari.com

Reference No. – ABSMARI/IRB/01/2023 Date: 4th Jan 2023

INSTITUTIONAL REVIEW BOARD

To

Mr/Ms. Tanmaya Milind Swati Kapre,
Post Graduate student, Department of Physiotherapy,
Abhinav Bindra Sports Medicine and Research Institute (ABSMARI).

This is to certify that your proposal for the study titled "Effect of Mental Imagery in enhancing soccer pass and control skills in collegiate level soccer players - A Randomized controlled Trial" has been taken for discussion in the meeting held on 02^{nd} Jan 2022. Following the meeting, the committee approves the proposal and it has no objection on the study being carried out.

You are advised to familiarize yourself with the ICMR guidelines on biomedical research in human subjects and also adhere to the principles of Good Clinical Practice. You are hereby directed to submit the final report to the committee, on completion of the study. Any case of adverse reactions should be informed to this ethics committee and action will be taken thereafter.

Any such adverse reactions during the course of the study are the sole responsibility of the Principal Investigator and there is no onus on the Ethical Committee members resulting thereof.

We wish you all the best for your study

James Secretary

Chair Person

Proforma format (used for documentation)

Subject Evaluation Form

Name:		Age/0	Gender:	Group:	
Pre-intervention:					
1) LSPT score:					
Time taken to complete	the test (in sec):				
Penalty time (in sec):					
Performance time (in se	ec):				
2) McDonald soc	ccer skill test score:				
No. of passes-					
Trial 1	Trial 2	Trial 3		Final score(highe	st)
Post-intervention:					
1) LSPT scor	e:				
ime taken to complete th	e test (in sec):				
Penalty time (in sec):					
Performance time (in sec)	:				
2) McDonald	soccer skill test sco	re:			

No. of passes-

Trial 1	Trial 2	Trial 3	Final score(highest)

Nordic Musculoskeletal questionnaire (for exclusion)

Musculoskeletal Discomfort Form	(Based on the Nordic Questionnaire (Kourinka et al. 1987))				Employee ID:				_	
Job/Position:		Gender:	M	F	Age:	Height:	ft	in.	Weight:	
How long have you been doing this job?	_years _	_ months	H	ow n	nany hours do y	ou work each week?				

How to answer the questionnaire:

Picture: In this picture you can see the approximate position of the parts of the body referred to in the table. Limits are not sharply defined, and certain parts overlap. You should decide for yourself in which part you have or have had your trouble (if any).

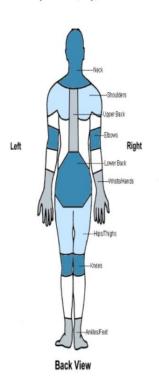


Table: Please answer by putting an "X" in the appropriate box - one "X" for each question. You may be in doubt as to how to answer, but please do your best anyway. Note that column 1 of the questionnaire is to be answered even if you have never had trouble in any part of your body; columns 2 and 3 are to be answered if you answered yes in column 1.

To be answered by everyone		To be answered by those who have had trouble					
Have you at any time during the last 12 months had trouble (ache, pain, discomfort, numbness) in:		last 12 mor from doing	t any time during the nths been prevented your normal work away from home) the trouble?	Have you had trouble at any time during the last 7 days?			
Neck							
□ No	☐ Yes	□ No	☐ Yes	□No	☐ Yes		
Shoulders							
□No	☐ Yes, right shoulder						
	☐ Yes, left shoulder	□ No	☐ Yes	□ No	☐ Yes		
	☐ Yes, both shoulders						
Elbows							
□No	☐ Yes, right elbow						
	☐ Yes, left elbow	□ No	☐ Yes	□No	☐ Yes		
	☐ Yes, both elbows						
Wrists/Hand	ds						
□No	☐ Yes, right wrist/hand						
	☐ Yes, left wrist/hand	□ No	☐ Yes	□No	☐ Yes		
	☐ Yes, both wrists/hands						
Upper Back							
□No	☐ Yes	□ No	☐ Yes	□No	☐ Yes		
Lower Back	(small of back)						
\square No	☐ Yes	□No	☐ Yes	□No	☐ Yes		
One or Both	Hips/Thighs						
□ No	☐ Yes	□ No	□ Yes	□ No	\square Yes		
One or Both	Knees						
□No	☐ Yes	□ No	☐ Yes	□ No	☐ Yes		
One or Both	Ankles/Feet						
□No	☐ Yes	□ No	☐ Yes	□No	☐ Yes		

Tegner Activity level score (for inclusion)

TEGNER ACTIVITY LEVEL SCORE

Please indicate in the spaces below the HIGHEST level of activity that you participated in BEFORE YOUR INJURY and the highest level you are CURRENTLY able to participate in. Using the circles below, check space you wish to participate in, in the future.

BEFORE	INJURY LEVEL: CURRENT LEVEL:	
0		- 0
Level 10	Competitive sports- soccer, football, rugby (national elite)	0
Level 9	Competitive sports- soccer, football, rugby (lower divisions), ice hockey, wrestling, gymnastics, basketball	0
Level 8	Competitive sports- racquetball or bandy, squash or badminton, track and field athletics (jumping, etc.), down-hill skiing	0
Level 7	Competitive sports- racquetball or bandy, squash or badminton, track and field athletics (jumping, etc.), down-hill skiing	0
Level 6	Recreational sports- tennis and badminton, handball, racquetball, down-hill skiing, jogging at least 5 times per week	0
Level 5	Work- heavy labor (construction, etc.) Competitive sports- cycling, cross-country skiing, Recreational sports- jogging on uneven ground at least twice weekly	0
Level 4	Work- Work- moderately heavy labor (e.g. truck driving, etc.)	0
Level 3	Work- light labor (nursing, etc.)	0
Level 2	Work- light labor Walking on uneven ground possible, but	0
Level 1	impossible to back pack or hike Work- Work- sedentary (secretarial, etc.)	0
Level 0	Sick leave or disability pension because of knee problems	0
YTegnerand	J Lysolm. Rating Systems in the Evaluation of Knee Ligament Injuries. Clinical Orthopedics and Related Research. Vol. 191	8: 43-49, 1985
Surgical H	History	
,	had any additional surgeries to your knee other than those performed by Dr. Steret	t? YES / NO
IF YES: What pro	cedure(s) were performed?	
When was	the surgery performed?	

When performed surgery?